
MPF Documentation Developer
Documentation

Release 0.33.49

The Mission Pinball Framework Team

Dec 23, 2017

DEVELOPER DOCUMENTATION

1 Understanding the MPF codebase 3

2 Adding custom code to your machine 5

3 API Reference 7

4 Writing Tests 9

5 Extending, Adding to, and Enhancing MPF 11

6 BCP Protocol 13

7 Index 15
7.1 Overview & Tour of MPF code . 15
7.2 Adding custom code to your game . 18
7.3 API Reference . 26
7.4 Automated Testing . 175
7.5 Extending MPF . 176
7.6 BCP Protocol Specification . 178
7.7 Method & Class Index . 192

i

ii

MPF Documentation Developer Documentation, Release 0.33.49

This is the developer documentation for the Mission Pinball Framework (MPF), version 0.33. Click the "Read the
Docs" link in the lower left corner for other versions & downloads.

This documentation is for people who want to want to add custom Python code & game logic to their machine and for
people who want to contribute to MPF itself.

Note: This is DEVELOPER documentation, not general USER documentation!

This documentation is for people writing custom Python code for MPF. If you’re a general user of MPF, read the MPF
User Documentation instead.

This developer documentation is broken into several sections:

DEVELOPER DOCUMENTATION 1

http://missionpinball.org
http://docs.missionpinball.org
http://docs.missionpinball.org

MPF Documentation Developer Documentation, Release 0.33.49

2 DEVELOPER DOCUMENTATION

CHAPTER 1

Understanding the MPF codebase

• Overview & Tour of MPF code

• MPF Files & Modules

• How MPF installs itself

• Understanding the MPF boot up / start process

• MPF’s divergence for pure YAML

3

MPF Documentation Developer Documentation, Release 0.33.49

4 Chapter 1. Understanding the MPF codebase

CHAPTER 2

Adding custom code to your machine

• Adding custom code to your game

• How to add machine-wide custom code

• How to add custom Python code to a game mode

5

MPF Documentation Developer Documentation, Release 0.33.49

6 Chapter 2. Adding custom code to your machine

CHAPTER 3

API Reference

• Core Components

• Devices

• Modes

• Config Players

• Hardware Platforms

• Miscellaneous Components

• Testing Class API

7

MPF Documentation Developer Documentation, Release 0.33.49

8 Chapter 3. API Reference

CHAPTER 4

Writing Tests

• Automated Testing

• How to run MPF unittests

• Writing Unit Tests for MPF

• Writing Unit Tests for Your Game

• Fuzz Testing

9

MPF Documentation Developer Documentation, Release 0.33.49

10 Chapter 4. Writing Tests

CHAPTER 5

Extending, Adding to, and Enhancing MPF

• Extending MPF

• Setting up your MPF Dev Environment

• Writing Plugins for MPF

• Developing your own hardware interface for MPF

11

MPF Documentation Developer Documentation, Release 0.33.49

12 Chapter 5. Extending, Adding to, and Enhancing MPF

CHAPTER 6

BCP Protocol

• BCP Protocol Specification

13

MPF Documentation Developer Documentation, Release 0.33.49

14 Chapter 6. BCP Protocol

CHAPTER 7

Index

• We have an index which lists all the classes, methods, and attributes in MPF across the board.

7.1 Overview & Tour of MPF code

This guide provides a general overview of the MPF and MPF-MC codebase.

7.1.1 MPF Files & Modules

The MPF packages contains the following folders:

• /build_scripts: Scripts which can be used to locally build & test MPF packages and wheels

• /docs: The Sphinx-based developer docs that you’re reading now

• /mpf: The actual mpf package that’s copied to your machine when MPF is installed

• /tools: A few random tools

The MPF package

The MPF package (e.g. the /mpf subfolder which is copied to your install location when you install MPF) contains
the following folders:

• /assets: Contains the asset classes used in MPF (the "shows" asset class)

• /commands: Modules for the command-line interface for MPF

• /config_players: Modules for the built-in config_players

• /core: Core MPF system modules

• /devices: Device modules

• /exceptions: MPF exception classes

15

MPF Documentation Developer Documentation, Release 0.33.49

• /file_interfaces: MPF file interfaces (current just YAML, could support more in the future)

• /migrator: MPF Migrator files

• /modes: Code for built-in modes (game, attract, tilt, credits, etc.)

• /platforms: Hardware platform modules

• /plugins: Built-in MPF plugins

• /tests: MPF unit tests

It also includes the following files in the package root:

• __init__.py: Makes the MPF folder a package

• __main__.py: Allows the MPF commands to run

• _version.py: Contains version strings used throughout MPF for the current version

• mpfconfig.yaml: The "base" machine config file that is used for all machines (unless this is specifically
overridden via the command-line options.

7.1.2 How MPF installs itself

This guide explains what happens when MPF is installed.

MPF contains a setup.py file in the root of the MPF repository. This is the file that’s called by pip when MPF is
installed. (You can also install MPF without using pip by running python3 setup.py from the root folder.)

Dependencies

MPF requires Python 3.4 or newer. In our installation instructions, we also recommend that users install/update the
following Python packages to their latest versions:

• pip

• setuptools (for Linux & Mac)

• Cython 0.24.1 (for Linux * Mac)

The additional packages for Linux & Mac are used because MPF-MC is actually compiled on built on those platforms.
For Windows we have pre-built wheels, so compiling is not necessary.

MPF has the following additional dependencies which are specified in the setup.py file and automatically installed
when MPF is installed.

• ruamel.yaml >=0.10,<0.11: Used for reading & writing YAML files.

• pyserial >= 3.2.0: Used for serial communication with several types of hardware

• pyserial-asyncio >= 0.3: Also used for serial communication

• typing Used for type-checking & type hinting.

Note that some of these dependencies will install their own dependencies.

The setup.py file also specifies a console_scripts entry point called mpf. This is what lets the user type mpf from the
command environment to launch MPF.

16 Chapter 7. Index

http://python-packaging.readthedocs.io/en/latest/command-line-scripts.html#the-console-scripts-entry-point

MPF Documentation Developer Documentation, Release 0.33.49

7.1.3 Understanding the MPF boot up / start process

A user runs "mpf" from the command line, which is registered as a console script entry point when MPF is installed.
That entry point calls the function run_from_command_line in mpf.commands.__init__ module.

That module parses the command line arguments, figures out the machine path that’s being executed, and figures out
which MPF command is being called. (MPF commands are things like "both" or "mc".)

Some commands are built-in to MPF (in the mpf/commands folder), and others are registered as MPF via plugin
entry points when other packages are installed. (For example, MPF-MC registers the "mc" command, the MPF Monitor
registers the "monitor" command, etc.)

When you launch MPF (via mpf game or just plain mpf), the mpf.commands.game module’s Command class
is instantiated. This class processes the command line arguments, sets up logging, and then creates an instance of the
mpf.core.machine.MachineController class.

(This class is run inside a try: block, with all exceptions captured and then sent to the log. This is how MPF is able
to capture crashes and stack traces into the log file when it crashes.

The Machine Controller

The Machine Controller can be thought of as the main "kernel" of MPF. It does a lot of things, including:

• Loading, merging, & validating the config files

• Setting up the clock

• Loading platform modules (based on what’s used in the configs)

• Loading MPF core modules

• Loading MPF plugins

• Loading scriptlets and custom machine code

• Stepping through the initialization and reset phases

7.1.4 MPF’s divergence for pure YAML

MPF uses the YAML file format for config and show files. That said, MPF diverges from the pure YAML 1.2 specifi-
cation in a few ways:

Values beginning with "+" are strings

The YAML spec essentially ignores a leading plus sign, so a value +1 would be read in as the integer 1.
However MPF needs to differentiate between +1 and 1 since the plus sign is used to mean the value is
a delta in certain situations, so MPF’s YAML interfaces will process any numeric values with a leading
plus sign as strings.

Values beginning with a leading "0" are strings

The YAML spec will process values that are only digits 0-7 with leading zeros as octals. However MPF
could have color values like 050505 which should be read as strings. So the MPF YAML interface
processes any value with at least 3 digits and leading zeros as strings.

"On" and "Off" values are strings

The YAML spec defines on and off values as bools. But many MPF users create show names called
"on" and "off", so MPF’s YAML processor interprets those as strings. (True, False, Yes, and No are still
processes as bools.)

7.1. Overview & Tour of MPF code 17

http://www.yaml.org/spec/1.2/spec.html
http://www.yaml.org/spec/1.2/spec.html

MPF Documentation Developer Documentation, Release 0.33.49

Values with only digits and "e" are strings

The MPF spec will process a value like 123e45 as "123 exponent 45". Since those could be hex color
codes, MPF’s YAML interface processes values that are all digits with a single "e" character as strings.

7.2 Adding custom code to your game

While one of the goals of MPF is to allow you to do as much of your game’s configuration as possible with the config
files, we recognize that many people will want to mix in some custom code to their machines.

Fortunately that’s easy to do, and you don’t have to "hack" MPF or break anything to make it happen!

The amount of custom code you use is up to you, depending on your personal preferences, your comfort with Python,
and what exactly you want to do with your machine.

Some people will use the config files for 99% of their machine, and only add a little custom code here and there.
Others will only want to use the configs for the "basic" stuff and then write all their game logic in Python. Either
option is fine with us!

When you decide that you want to add some custom Python code into your game, there are three ways you can do this:

• Mode-specific code, which allows you to write custom Python code which is only active when a particular game
mode is active.

• Machine-wide code, useful for dealing with custom hardware, like the crane in Demolition Man.

7.2.1 How to add custom Python code to a game mode

The easiest and most common way to add custom Python code into your MPF game is to add a code module to a mode
folder. That lets you run code when that mode is active and helps you break up any custom code you write per mode.

This "mode code" (as we call it) has access to the full MPF API. You can post events, register event handlers which
run custom things when events are posted, access device state and control devices, read and set player variables, post
slides... really anything MPF can do, you can do.

Here’s how you get started with custom mode code:

1. Create the module (file) to hold you code

First, go into the folder where you want to create your custom code, and add a "code" folder to that mode’s folder.
Then inside that folder, create a file (we usually give this file the same name as the mode) with a .py extension.

For example, if you wanted to create custom code for your base mode, it would look like this:

18 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.33.49

2. Open up the new Python file you just created

Next, open the new mode code Python file you just created and add the bare minimum, which would look like this:

from mpf.core.mode import Mode

class Base(Mode):
pass

MPF includes a Mode class which acts as the base class for every mode that runs in a game. That base class lives in
the MPF package at mpf.core.mode. You can see it online in GitHub here.

Notice that we named our custom class Base. You can name it whatever you want.

3. Update your mode config file to use the custom code

Once you create your custom mode code, you need to tell MPF that this mode uses custom code instead of just the
built-in code.

To do this, add a code: entry into the mode config file for the mode where you’re adding custom code. So in this
case, that would be in the /modes/base/config/base.yaml file, like this:

mode:
start_events: ball_starting
priority: 100
code: base.Base

Note that the value for the code: section is the name of the Python module (the file), then a dot, then the name of the
class from that file. So in this case, that’s base.Base.

4. Run your game!

At this point you should be able to run your game and nothing should happen. This is good, because if it doesn’t crash,
that means you did everything right. :) Of course nothing special happens because you didn’t actually add any code to
your custom mode code, so you won’t see anything different.

7.2. Adding custom code to your game 19

https://github.com/missionpinball/mpf/blob/dev/mpf/core/mode.py

MPF Documentation Developer Documentation, Release 0.33.49

5. Add some custom methods to do things

You can look at the Mode base class (the link from GitHub from earlier) to see what the base Mode class does.
However, we have created a few "convenience" methods that you can use. They are:

mode_init Called once when MPF is starting up

mode_start Called every time the mode starts, just after the mode_<name>_started event is posted.

mode_stop Called every time the mode stops, just before the mode_<name>_stopping event is posted.

add_mode_event_handler This is the same as the main add_event_handler() method from the
Event Manager, except since it’s mode-specific it will also automatically remove any event handlers
that you registered when the mode stops. (If you want to register event handlers that are always
watching for events even when the mode is not running, you can use the regular self.machine.
mode.add_handler() method.

You don’t have to use all of these if you don’t want to.

Also, modes have additional convenience attributes you can use within your mode code:

self.config A link to the config dictionary for the mode’s config file.

self.priority The priority the mode is running at. (Don’t change this. Just read it.)

self.delay An instance of the delay manager you can use to set delayed callbacks for this mode. Any
active ones will be automatically removed when the mode ends.

self.player A link to the current player object that’s automatically updated when the player changes. This
will be None if the mode is running outside of a game.

self.active A boolean (True/False) value you can query to see if the mode is running.

6. Example usage

Here’s an example of some mode code in use. This example is just a bunch of random things, but again, since you’re
writing code here, the sky’s the limit! Seriously you could do all your game logic in mode code and not use the MPF
configs at all if you wanted to.

from mpf.core.mode import Mode

class Base(Mode):

def mode_init(self):
print("My custom mode code is being initialized")

def mode_start(self, **kwargs):
The mode_start method needs **kwargs because some events that
start modes pass additional parameters

print("My custom mode code is starting")

call a delay in 5 seconds
self.delay.add(5000, self.my_callback)

what player are we?
print(self.player.number)

what's the player's score?

20 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.33.49

print('Score: {}'.format(self.player.score))

self.add_mode_event_handler('player_score', self.player_score_change)

turn LED "led01" red
self.machine.leds.led01.color('red')

def my_callback(self):
print("My delayed call was just called!")

def player_score_change(self, **kwargs):
print("The new player's score is {}".format(self.player.score))

def mode_stop(self, **kwargs):
The mode_stop method needs **kwargs because some events that
stop modes pass additional parameters

print("My custom mode code is stopping")

You can use the API reference (or just look at the source code) to see what options exist. Really you can do anything
you want.

7.2.2 How to add machine-wide custom code

MPF contains a "Scriptlet" concept which lets you add custom code to your game.

Scriptlets are Python modules that run at the "root" of your game. You can use them to do anything you want.

Note that MPF also has the ability to run custom mode code which is code that is associated with a certain game mode
and is generally only active when the mode it’s in is active. So if you just want to write your own custom game logic,
you’ll probably use mode code.

Scriptlets, on the other hand, are sort of "machine-level" custom code. Scriptlets are nice if you have some kind
of custom device type that doesn’t match up to any of MPF’s built in devices. The elevator and claw unloader in
Demolition Man is a good example, and what we’ll use here.

(You can read about how to download and run Demo Man in the example games section section of the MPF User
Documentation.)

Here’s how to create a scriptlet:

1. Create your scriptlet file

First, add a scriptlets folder to your machine folder. Then inside there, create the Python file that will hold your
scriptlet. You can name this file whatever you want, just remember the name for the next step.

In the Demo Man example, it looks like this:

7.2. Adding custom code to your game 21

http://docs.missionpinball.org/en/latest/example_games

MPF Documentation Developer Documentation, Release 0.33.49

2. Open and edit your scriptlet file

Next, edit the scriptlet file you created. At a bare minimum, you’ll need this:

from mpf.core.scriptlet import Scriptlet

class Claw(Scriptlet):
pass

Note that MPF contains a Scriptlet base class which is very simple. (You can see the source of it on GitHub here.)
We called our class Claw in this case.

Pretty much all this does is give you a reference to the main MPF machine controller at self.machine, as well as
setup a delay manager you can use and set the name of your scriptlet. There’s also an on_load() method which is
called when the scriptlet is loaded which you can use in your own code.

3. Add the scriptlet to your machine config

Next, edit your machine config file and add a scriptlets: section, then under there add the module (file name)
for your scriptlet, followed by a dot, followed by the class name for your scriptlet.

For Demo Man, that looks like this:

scriptlets:
- claw.Claw

4. Real-world example

At this point you should be able to run your game, though nothing should happen because you haven’t added any code
to your scriptlet.

Take a look at the final Demo Man claw scriptlet to see what we did there. Since Scriptlets have access to self.
machine and they load when MPF loads, you can do anything you want in them.

22 Chapter 7. Index

https://github.com/missionpinball/mpf/blob/dev/mpf/core/scriptlet.py

MPF Documentation Developer Documentation, Release 0.33.49

"""Claw controller Scriptlet for Demo Man"""

from mpf.core.scriptlet import Scriptlet

class Claw(Scriptlet):

def on_load(self):

self.auto_release_in_progress = False

if the elevator switch is active for more than 100ms, that means
a ball is there, so we want to get it and deliver it to the claw
self.machine.switch_controller.add_switch_handler(

's_elevator_hold', self.get_ball, ms=100)

This is a one-time thing to check to see if there's a ball in
the elevator when MPF starts, and if so, we want to get it.
if self.machine.switch_controller.is_active('s_elevator_hold'):

self.auto_release_in_progress = True
self.get_ball()

We'll use the event 'light_claw' to light the claw, so in the
future all we have to do is post this event and everything else
will be automatic.
self.machine.events.add_handler('light_claw', self.light_claw)

def enable(self):
"""Enable the claw."""

move left & right with the flipper switches, and stop moving when
they're released

self.machine.switch_controller.add_switch_handler(
's_flipper_lower_left', self.move_left)

self.machine.switch_controller.add_switch_handler(
's_flipper_lower_left', self.stop_moving, state=0)

self.machine.switch_controller.add_switch_handler(
's_flipper_lower_right', self.move_right)

self.machine.switch_controller.add_switch_handler(
's_flipper_lower_right', self.stop_moving, state=0)

release the ball when the launch button is hit
self.machine.switch_controller.add_switch_handler(

's_ball_launch', self.release)

stop moving if the claw hits a limit switch
self.machine.switch_controller.add_switch_handler(

's_claw_position_1', self.stop_moving)

We can use this event for slides to explain what's going on for
the player.
self.machine.events.post('claw_enabled')

def disable(self):
"""Disable the claw."""

self.stop_moving()

7.2. Adding custom code to your game 23

MPF Documentation Developer Documentation, Release 0.33.49

remove all the switch handlers
self.machine.switch_controller.remove_switch_handler(

's_flipper_lower_left', self.move_left)
self.machine.switch_controller.remove_switch_handler(

's_flipper_lower_left', self.stop_moving, state=0)
self.machine.switch_controller.remove_switch_handler(

's_flipper_lower_right', self.move_right)
self.machine.switch_controller.remove_switch_handler(

's_flipper_lower_right', self.stop_moving, state=0)
self.machine.switch_controller.remove_switch_handler(

's_ball_launch', self.release)
self.machine.switch_controller.remove_switch_handler(

's_claw_position_1', self.stop_moving)
self.machine.switch_controller.remove_switch_handler(

's_claw_position_1', self.release, state=0)
self.machine.switch_controller.remove_switch_handler(

's_claw_position_2', self.release)

self.machine.events.post('claw_disabled')

def move_left(self):
"""Start the claw moving to the left."""
before we turn on the driver to move the claw, make sure we're not
at the left limit
if (self.machine.switch_controller.is_active('s_claw_position_2') and

self.machine.switch_controller.is_active('s_claw_position_1')):
return

self.machine.coils['c_claw_motor_left'].enable()

def move_right(self):
"""Start the claw moving to the right."""
before we turn on the driver to move the claw, make sure we're not
at the right limit
if (self.machine.switch_controller.is_active('s_claw_position_1') and

self.machine.switch_controller.is_inactive('s_claw_position_2')):
return

self.machine.coils['c_claw_motor_right'].enable()

def stop_moving(self):
"""Stop the claw moving."""
self.machine.coils['c_claw_motor_left'].disable()
self.machine.coils['c_claw_motor_right'].disable()

def release(self):
"""Release the ball by disabling the claw magnet."""
self.disable_claw_magnet()
self.auto_release_in_progress = False

Disable the claw since it doesn't have a ball anymore
self.disable()

def auto_release(self):
"""Aumatically move and release the ball."""
disable the switches since the machine is in control now
self.disable()

If we're at the left limit, we need to move right before we can

24 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.33.49

release the ball.
if (self.machine.switch_controller.is_active('s_claw_position_2') and

self.machine.switch_controller.is_active('s_claw_position_1')):
self.machine.switch_controller.add_switch_handler(

's_claw_position_1', self.release, state=0)
move right, drop when switch 1 opens
self.move_right()

If we're at the right limit, we need to move left before we can
release the ball
elif (self.machine.switch_controller.is_active('s_claw_position_1') and

self.machine.switch_controller.is_inactive('s_claw_position_2')):
self.machine.switch_controller.add_switch_handler(

's_claw_position_2', self.release)
move left, drop when switch 2 closes
self.move_left()

If we're not at any limit, we can release the ball now.
else:

self.release()

def get_ball(self):
"""Get a ball from the elevator."""

If there's no game in progress, we're going to auto pickup and
drop the ball with no player input

if not self.machine.game:
self.auto_release_in_progress = True

If the claw is not already in the ball pickup position, then move it
to the right.
if not (self.machine.switch_controller.is_active('s_claw_position_1') and

self.machine.switch_controller.is_inactive('s_claw_position_2')):
self.move_right()

self.machine.switch_controller.add_switch_handler(
's_claw_position_1', self.do_pickup)

If the claw is in position for a pickup, we can do that pickup now
else:

self.do_pickup()

def do_pickup(self):
"""Pickup a ball from the elevator"""
self.stop_moving()
self.machine.switch_controller.remove_switch_handler(

's_claw_position_1', self.do_pickup)
self.enable_claw_magnet()
self.machine.coils['c_elevator_motor'].enable()
self.machine.switch_controller.add_switch_handler('s_elevator_index',

self.stop_elevator)

If this is not an auto release, enable control of the claw for the
player
if not self.auto_release_in_progress:

self.enable()

7.2. Adding custom code to your game 25

MPF Documentation Developer Documentation, Release 0.33.49

def stop_elevator(self):
"""Stop the elevator."""
self.machine.coils['c_elevator_motor'].disable()

if self.auto_release_in_progress:
self.auto_release()

def light_claw(self, **kwargs):
"""Lights the claw."""

Lighting the claw just enables the diverter so that the ball shot
that way will go to the elevator. Once the ball hits the elevator,
the other methods kick in to deliver it to the claw, and then once
the claw has it, the player can move and release it on their own.
self.machine.diverters['diverter'].enable()

def disable_claw_magnet(self):
"""Disable the claw magnet."""
self.machine.coils['c_claw_magnet'].disable()

def enable_claw_magnet(self):
"""Enable the claw magnet."""
self.machine.coils['c_claw_magnet'].enable()

7.3 API Reference

MPF’s API reference is broken into several categories. All of it is presented in the way that the modules and classes
are actually used in MPF.

Core Components

MPF core components.

Devices

MPF devices, including physical devices like flippers, ball devices, switches, lights, etc. as well as logical
devices like ball saves, extra balls, multiballs, etc.

Modes

Built-in modes, such as game, attract, tilt, credits, etc.

Platforms

Hardware platforms interfacess for all supported hardware.

Config Players

Modules responsible for all config players (show_player, light_player, score_player, etc.)

Tests

All unit test base classes for writing tests for MPF and your own game.

Miscellaneous Components

Things that don’t fit into other categories, including utility functions, the base classes for modes, players,
timers, and other utility functions.

26 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.33.49

7.3.1 Core Components

Core MPF machine components, accessible to programmers at self.machine.*name*. For example, the ball
controller is at self.machine.ball_controller, the event manager is self.machine.events, etc.

self.machine.asset_manager

class mpf.core.assets.AsyncioSyncAssetManager(machine)
Bases: mpf.core.assets.BaseAssetManager

AssetManager which uses asyncio to load assets.

Accessing the asset_manager in code

There is only one instance of the asset_manager in MPF, and it’s accessible via self.machine.
asset_manager.

Methods & Attributes

The asset_manager has the following methods & attributes available. Note that methods & attributes inherited
from base classes are not included here.

load_asset(asset)
Load an asset.

wait_for_asset_load(asset)
Wait for an asset to load.

self.machine.auditor

class mpf.plugins.auditor.Auditor(machine)
Bases: object

Base class for the auditor.

Parameters machine – A refence to the machine controller object.

Accessing the auditor in code

There is only one instance of the auditor in MPF, and it’s accessible via self.machine.auditor.

Methods & Attributes

The auditor has the following methods & attributes available. Note that methods & attributes inherited from
base classes are not included here.

audit(audit_class, event, **kwargs)
Called to log an auditable event.

Parameters

• audit_class – A string of the section we want this event to be

7.3. API Reference 27

MPF Documentation Developer Documentation, Release 0.33.49

• to. (logged) –

• event – A string name of the event we’re auditing.

• **kawargs – Not used, but included since some of the audit events might include ran-
dom kwargs.

audit_event(eventname, **kwargs)
Registered as an event handlers to log an event to the audit log.

Parameters

• eventname – The string name of the event.

• not used, but included since some types of events include
(**kwargs,) – kwargs.

audit_player(**kwargs)
Called to write player data to the audit log.

Typically this is only called at the end of a game.

Parameters not used, but included since some types of events
include (**kwargs,) – kwargs.

audit_shot(name, profile, state)
Record shot hit.

audit_switch(change: mpf.core.switch_controller.MonitoredSwitchChange)
Record switch change.

disable(**kwargs)
Disable the auditor.

enable(**kwargs)
Enable the auditor.

This method lets you enable the auditor so it only records things when you want it to. Typically this is
called at the beginning of a game.

Parameters **kwargs – No function here. They just exist to allow this method to be registered
as a handler for events that might contain keyword arguments.

enabled = None
Attribute that’s viewed by other core components to let them know they should send auditing events. Set
this via the enable() and disable() methods.

self.machine.ball_controller

class mpf.core.ball_controller.BallController(machine)
Bases: mpf.core.mpf_controller.MpfController

Base class for the Ball Controller which is used to keep track of all the balls in a pinball machine.

Parameters machine (MachineController) – A reference to the instance of the Ma-
chineController object.

Accessing the ball_controller in code

There is only one instance of the ball_controller in MPF, and it’s accessible via self.machine.
ball_controller.

28 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.33.49

Methods & Attributes

The ball_controller has the following methods & attributes available. Note that methods & attributes inherited
from base classes are not included here.

add_captured_ball(source)
Inform ball controller about a capured ball (which might be new).

are_balls_collected(target)
Check to see if all the balls are contained in devices tagged with the parameter that was passed.

Note if you pass a target that’s not used in any ball devices, this method will return True. (Because you’re
asking if all balls are nowhere, and they always are. :)

Parameters target – String or list of strings of the tags you’d like to collect the balls to.
Default of None will be replaced with ’home’ and ’trough’.

collect_balls(target=’home, trough’)
Used to ensure that all balls are in contained in ball devices with the tag or list of tags you pass.

Typically this would be used after a game ends, or when the machine is reset or first starts up, to ensure
that all balls are in devices tagged with ’home’ and/or ’trough’.

Parameters target – A string of the tag name or a list of tags names of the ball devices you
want all the balls to end up in. Default is [’home’, ’trough’].

dump_ball_counts()
Dump ball count of all devices.

request_to_start_game(**kwargs)
Method registered for the request_to_start_game event.

Checks to make sure that the balls are in all the right places and returns. If too many balls are missing
(based on the config files ’Min Balls’ setting), it will return False to reject the game start request.

self.machine.bcp

class mpf.core.bcp.bcp.Bcp(machine)
Bases: mpf.core.mpf_controller.MpfController

BCP Module.

Accessing the bcp in code

There is only one instance of the bcp in MPF, and it’s accessible via self.machine.bcp.

Methods & Attributes

The bcp has the following methods & attributes available. Note that methods & attributes inherited from base
classes are not included here.

send(bcp_command, **kwargs)
Emulate legacy send.

Parameters bcp_command – Commmand to send

7.3. API Reference 29

MPF Documentation Developer Documentation, Release 0.33.49

self.machine.config_processor

class mpf.core.config_processor.ConfigProcessor(machine)
Bases: object

Config processor which loads the config.

Accessing the config_processor in code

There is only one instance of the config_processor in MPF, and it’s accessible via self.machine.
config_processor.

Methods & Attributes

The config_processor has the following methods & attributes available. Note that methods & attributes inherited
from base classes are not included here.

static load_config_file(filename, config_type, verify_version=True, halt_on_error=True, ig-
nore_unknown_sections=False)

Load a config file.

self.machine.device_manager

class mpf.core.device_manager.DeviceManager(machine)
Bases: mpf.core.mpf_controller.MpfController

Manages devices in a MPF machine.

Accessing the device_manager in code

There is only one instance of the device_manager in MPF, and it’s accessible via self.machine.
device_manager.

Methods & Attributes

The device_manager has the following methods & attributes available. Note that methods & attributes inherited
from base classes are not included here.

create_collection_control_events(**kwargs)
Create control events for collection.

create_devices(collection_name, config)
Create devices for collection.

create_machinewide_device_control_events(**kwargs)
Create machine wide control events.

get_device_control_events(config)
Scan a config dictionary for control_events.

Yields events, methods, delays, and devices for all the devices and control_events in that config.

Parameters config – An MPF config dictionary (either machine-wide or mode- specific).

30 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.33.49

Returns

• The event name

• The callback method of the device

• The delay in ms

• The device object

Return type A generator of 4-item tuples

get_monitorable_devices()
Return all devices which are registered as monitorable.

initialize_devices()
Initialise devices.

load_devices_config(validate=True)
Load all devices.

notify_device_changes(device, notify, old, value)
Notify subscribers about changes in a registered device.

register_monitorable_device(device)
Register a monitorable device.

self.machine.events

class mpf.core.events.EventManager(machine)
Bases: mpf.core.mpf_controller.MpfController

Handles all the events and manages the handlers in MPF.

Accessing the events in code

There is only one instance of the events in MPF, and it’s accessible via self.machine.events.

Methods & Attributes

The events has the following methods & attributes available. Note that methods & attributes inherited from base
classes are not included here.

add_handler(event, handler, priority=1, **kwargs)
Register an event handler to respond to an event.

If you add a handlers for an event for which it has already been registered, the new one will overwrite the
old one. This is useful for changing priorities of existing handlers. Also it’s good to know that you can
safely add a handler over and over.

Parameters

• event – String name of the event you’re adding a handler for. Since events are text
strings, they don’t have to be pre-defined. Note that all event strings will be converted to
lowercase.

• handler – The callable method that will be called when the event is fired. Since it’s
possible for events to have kwargs attached to them, the handler method must include
**kwargs in its signature.

7.3. API Reference 31

MPF Documentation Developer Documentation, Release 0.33.49

• priority – An arbitrary integer value that defines what order the handlers will be called
in. The default is 1, so if you have a handler that you want to be called first, add it here
with a priority of 2. (Or 3 or 10 or 100000.) The numbers don’t matter. They’re called
from highest to lowest. (i.e. priority 100 is called before priority 1.)

• **kwargs – Any any additional keyword/argument pairs entered here will be attached
to the handler and called whenever that handler is called. Note these are in addition to
kwargs that could be passed as part of the event post. If there’s a conflict, the event-level
ones will win.

Returns A GUID reference to the handler which you can use to later remove the handler via
remove_handler_by_key.

For example: my_handler = self.machine.events.add_handler('ev', self.
test))

Then later to remove all the handlers that a module added, you could: for handler in handler_list:
events.remove_handler(my_handler)

does_event_exist(event_name)
Check to see if any handlers are registered for the event name that is passed.

Parameters event_name – The string name of the event you want to check. This string will
be converted to lowercase.

Returns True or False

get_event_and_condition_from_string(event_string)
Parse an event string to divide the event name from a possible placeholder / conditional in braces.

Parameters event_string – String to parse

Returns

First item is the event name, cleaned up a by converting it to lowercase.

Second item is the condition (A BoolTemplate instance) if it exists, or None if it doesn’t.

Return type 2-item tuple

post(event, callback=None, **kwargs)
Post an event which causes all the registered handlers to be called.

Events are processed serially (e.g. one at a time), so if the event core is in the process of handling another
event, this event is added to a queue and processed after the current event is done.

You can control the order the handlers will be called by optionally specifying a priority when the handlers
were registered. (Higher priority values will be processed first.)

Parameters

• event – A string name of the event you’re posting. Note that you can post whatever
event you want. You don’t have to set up anything ahead of time, and if no handlers are
registered for the event you post, so be it. Note that this event name will be converted to
lowercase.

• callback – An optional method which will be called when the final handler is done
processing this event. Default is None.

• **kwargs – One or more options keyword/value pairs that will be passed to each handler.
(Just make sure your handlers are expecting them. You can add **kwargs to your handler
methods if certain ones don’t need them.)

32 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.33.49

post_async(event, **kwargs)
Post event and wait until all handlers are done.

post_boolean(event, callback=None, **kwargs)
Post an boolean event which causes all the registered handlers to be called one-by-one.

Boolean events differ from regular events in that if any handler returns False, the remaining handlers will
not be called.

Events are processed serially (e.g. one at a time), so if the event core is in the process of handling another
event, this event is added to a queue and processed after the current event is done.

You can control the order the handlers will be called by optionally specifying a priority when the handlers
were registered. (Higher priority values will be processed first.)

Parameters

• event – A string name of the event you’re posting. Note that you can post whatever
event you want. You don’t have to set up anything ahead of time, and if no handlers are
registered for the event you post, so be it. Note that this event name will be converted to
lowercase.

• callback – An optional method which will be called when the final handler is done
processing this event. Default is None. If any handler returns False and cancels this
boolean event, the callback will still be called, but a new kwarg ev_result=False will be
passed to it.

• **kwargs – One or more options keyword/value pairs that will be passed to each handler.

post_queue(event, callback, **kwargs)
Post a queue event which causes all the registered handlers to be called.

Queue events differ from standard events in that individual handlers are given the option to register a
"wait", and the callback will not be called until any handler(s) that registered a wait will have to release
that wait. Once all the handlers release their waits, the callback is called.

Events are processed serially (e.g. one at a time), so if the event core is in the process of handling another
event, this event is added to a queue and processed after the current event is done.

You can control the order the handlers will be called by optionally specifying a priority when the handlers
were registered. (Higher numeric values will be processed first.)

Parameters

• event – A string name of the event you’re posting. Note that you can post whatever
event you want. You don’t have to set up anything ahead of time, and if no handlers are
registered for the event you post, so be it. Note that this event name will be converted to
lowercase.

• callback – The method which will be called when the final handler is done processing
this event and any handlers that registered waits have cleared their waits.

• **kwargs – One or more options keyword/value pairs that will be passed to each handler.
(Just make sure your handlers are expecting them. You can add **kwargs to your handler
methods if certain ones don’t need them.)

post_queue_async(event, **kwargs)
Post queue event, wait until all handlers are done and locks are released.

post_relay(event, callback=None, **kwargs)
Post a relay event which causes all the registered handlers to be called.

A dictionary can be passed from handler-to-handler and modified as needed.

7.3. API Reference 33

MPF Documentation Developer Documentation, Release 0.33.49

Parameters

• event – A string name of the event you’re posting. Note that you can post whatever
event you want. You don’t have to set up anything ahead of time, and if no handlers are
registered for the event you post, so be it. Note that this event name will be converted to
lowercase.

• callback – The method which will be called when the final handler is done processing
this event. Default is None.

• **kwargs – One or more options keyword/value pairs that will be passed to each handler.
(Just make sure your handlers are expecting them. You can add **kwargs to your handler
methods if certain ones don’t need them.)

Events are processed serially (e.g. one at a time), so if the event core is in the process of handling another
event, this event is added to a queue and processed after the current event is done.

You can control the order the handlers will be called by optionally specifying a priority when the handlers
were registered. (Higher priority values will be processed first.)

Relay events differ from standard events in that the resulting kwargs from one handler are passed to the
next handler. (In other words, standard events mean that all the handlers get the same initial kwargs,
whereas relay events "relay" the resulting kwargs from one handler to the next.)

post_relay_async(event, **kwargs)
Post relay event, wait until all handlers are done and return result.

process_event_queue()
Check if there are any other events that need to be processed, and then process them.

remove_handler(method)
Remove an event handler from all events a method is registered to handle.

Parameters method – The method whose handlers you want to remove.

remove_handler_by_event(event, handler)
Remove the handler you pass from the event you pass.

Parameters

• event – The name of the event you want to remove the handler from. This string will be
converted to lowercase.

• handler – The handler method you want to remove.

Note that keyword arguments for the handler are not taken into consideration. In other words, this method
only removes the registered handler / event combination, regardless of whether the keyword arguments
match or not.

remove_handler_by_key(key: mpf.core.events.EventHandlerKey)
Remove a registered event handler by key.

Parameters key – The key of the handler you want to remove

remove_handlers_by_keys(key_list)
Remove multiple event handlers based on a passed list of keys.

Parameters key_list – A list of keys of the handlers you want to remove

replace_handler(event, handler, priority=1, **kwargs)
Check to see if a handler (optionally with kwargs) is registered for an event and replaces it if so.

Parameters

34 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.33.49

• event – The event you want to check to see if this handler is registered for. This string
will be converted to lowercase.

• handler – The method of the handler you want to check.

• priority – Optional priority of the new handler that will be registered.

• **kwargs – The kwargs you want to check and the kwatgs that will be registered with
the new handler.

If you don’t pass kwargs, this method will just look for the handler and event combination. If you do pass
kwargs, it will make sure they match before replacing the existing entry.

If this method doesn’t find a match, it will still add the new handler.

wait_for_any_event(event_names: [<class ’str’>])
Wait for any event from event_names.

wait_for_event(event_name: str)
Wait for event.

self.machine.extra_ball_controller

class mpf.core.extra_balls.ExtraBallController(machine)
Bases: mpf.core.mpf_controller.MpfController

Tracks and manages extra balls at the global level.

Accessing the extra_ball_controller in code

There is only one instance of the extra_ball_controller in MPF, and it’s accessible via self.machine.
extra_ball_controller.

Methods & Attributes

The extra_ball_controller has the following methods & attributes available. Note that methods & attributes
inherited from base classes are not included here.

award(**kwargs)
Immediately awards an extra ball.

This event first checks to make sure the limits of the max extra balls have not been exceeded.

award_lit(**kwargs)
Awards a lit extra ball.

If the player does not have any lit extra balls, this method does nothing.

light(**kwargs)
Lights the extra ball.

This method also increments the player’s extra_balls_lit count.

relight(**kwargs)
Relights the extra ball when a player’s turn starts.

This event does not post the "extra_ball_lit_awarded" event so you can use it to not show the extra ball
awards when a player starts their turn with an extra ball lit.

7.3. API Reference 35

MPF Documentation Developer Documentation, Release 0.33.49

self.machine.info_lights

class mpf.plugins.info_lights.InfoLights(machine)
Bases: object

Plugin which uses lights to represent game state.

Accessing the info_lights in code

There is only one instance of the info_lights in MPF, and it’s accessible via self.machine.info_lights.

Methods & Attributes

The info_lights has the following methods & attributes available. Note that methods & attributes inherited from
base classes are not included here.

self.machine.logic_blocks

class mpf.core.logic_blocks.LogicBlocks(machine: mpf.core.machine.MachineController)
Bases: mpf.core.mpf_controller.MpfController

LogicBlock Manager.

Accessing the logic_blocks in code

There is only one instance of the logic_blocks in MPF, and it’s accessible via self.machine.
logic_blocks.

Methods & Attributes

The logic_blocks has the following methods & attributes available. Note that methods & attributes inherited
from base classes are not included here.

player_turn_start(player, **kwargs)
Create blocks for current player.

Parameters player – Player object

player_turn_stop(player: mpf.core.player.Player, **kwargs)
Remove blocks from current player.

Parameters player – Player pnkect

self.machine

class mpf.core.machine.MachineController(mpf_path: str, machine_path: str, options: dict)
Bases: mpf.core.logging.LogMixin

Base class for the Machine Controller object.

The machine controller is the main entity of the entire framework. It’s the main part that’s in charge and makes
things happen.

36 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.33.49

Parameters options – Dictionary of options the machine controller uses to configure itself.

options
dict – A dictionary of options built from the command line options used to launch mpf.py.

config
dict – A dictionary of machine’s configuration settings, merged from various sources.

game
mpf.modes.game.code.game.Game – the current game

machine_path
The root path of this machine_files folder

plugins

scriptlets

hardware_platforms

events
mpf.core.events.EventManager

Accessing the machine controller in code

The machine controller is the main component in MPF, accessible via self.machine. See the Overview &
Tour of MPF code for details.

Methods & Attributes

The machine controller has the following methods & attributes available. Note that methods & attributes inher-
ited from base classes are not included here.

add_platform(name)
Make an additional hardware platform interface available to MPF.

Parameters name – String name of the platform to add. Must match the name of a platform file
in the mpf/platforms folder (without the .py extension).

clear_boot_hold(hold)
Clear a boot hold.

create_data_manager(config_name)
Return a new DataManager for a certain config.

Parameters config_name – Name of the config

create_machine_var(name, value=0, persist=False, expire_secs=None, silent=False)
Create a new machine variable.

Parameters

• name – String name of the variable.

• value – The value of the variable. This can be any Type.

• persist – Boolean as to whether this variable should be saved to disk so it’s available
the next time MPF boots.

7.3. API Reference 37

MPF Documentation Developer Documentation, Release 0.33.49

• expire_secs – Optional number of seconds you’d like this variable to persist on disk
for. When MPF boots, if the expiration time of the variable is in the past, it will be loaded
with a value of 0. For example, this lets you write the number of credits on the machine to
disk to persist even during power off, but you could set it so that those only stay persisted
for an hour.

get_machine_var(name)
Return the value of a machine variable.

Parameters name – String name of the variable you want to get that value for.

Returns The value of the variable if it exists, or None if the variable does not exist.

get_platform_sections(platform_section, overwrite)
Return platform section.

init_done()
Finish init.

Called when init is done and all boot holds are cleared.

is_machine_var(name)
Return true if machine variable exists.

power_off(**kwargs)
Attempt to perform a power down of the pinball machine and ends MPF.

This method is not yet implemented.

register_boot_hold(hold)
Register a boot hold.

register_monitor(monitor_class, monitor)
Register a monitor.

Parameters

• monitor_class – String name of the monitor class for this monitor that’s being regis-
tered.

• monitor – String name of the monitor.

MPF uses monitors to allow components to monitor certain internal elements of MPF.

For example, a player variable monitor could be setup to be notified of any changes to a player variable, or
a switch monitor could be used to allow a plugin to be notified of any changes to any switches.

The MachineController’s list of registered monitors doesn’t actually do anything. Rather it’s a dictionary
of sets which the monitors themselves can reference when they need to do something. We just needed a
central registry of monitors.

remove_machine_var(name)
Remove a machine variable by name.

If this variable persists to disk, it will remove it from there too.

Parameters name – String name of the variable you want to remove.

remove_machine_var_search(startswith=”, endswith=”)
Remove a machine variable by matching parts of its name.

Parameters

• startswith – Optional start of the variable name to match.

• endswith – Optional end of the variable name to match.

38 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.33.49

For example, if you pass startswit=’player’ and endswith=’score’, this method will match and remove
player1_score, player2_score, etc.

reset()
Reset the machine.

This method is safe to call. It essentially sets up everything from scratch without reloading the config files
and assets from disk. This method is called after a game ends and before attract mode begins.

run()
Start the main machine run loop.

set_default_platform(name)
Set the default platform.

It is used if a device class-specific or device-specific platform is not specified.

Parameters name – String name of the platform to set to default.

set_machine_var(name, value, force_events=False)
Set the value of a machine variable.

Parameters

• name – String name of the variable you’re setting the value for.

• value – The value you’re setting. This can be any Type.

• force_events – Boolean which will force the event posting, the machine monitor
callback, and writing the variable to disk (if it’s set to persist). By default these things
only happen if the new value is different from the old value.

stop(**kwargs)
Perform a graceful exit of MPF.

validate_machine_config_section(section)
Validate a config section.

verify_system_info()
Dump information about the Python installation to the log.

Information includes Python version, Python executable, platform, and core architecture.

self.machine.mode_controller

class mpf.core.mode_controller.ModeController(machine)
Bases: mpf.core.mpf_controller.MpfController

Parent class for the Mode Controller.

There is one instance of this in MPF and it’s responsible for loading, unloading, and managing all modes.

Parameters machine – The main MachineController instance.

Accessing the mode_controller in code

There is only one instance of the mode_controller in MPF, and it’s accessible via self.machine.
mode_controller.

7.3. API Reference 39

MPF Documentation Developer Documentation, Release 0.33.49

Methods & Attributes

The mode_controller has the following methods & attributes available. Note that methods & attributes inherited
from base classes are not included here.

dump()
Dump the current status of the running modes to the log file.

is_active(mode_name)
Return true if the mode is active.

Parameters mode_name – String name of the mode to check.

Returns True if the mode is active, False if it is not.

register_load_method(load_method, config_section_name=None, priority=0, **kwargs)
Register a method which is called when the mode is loaded.

Used by core components, plugins, etc. to register themselves with the Mode Controller for anything they
need a mode to do when it’s registered.

Parameters

• load_method – The method that will be called when this mode code loads.

• config_section_name – An optional string for the section of the configuration file
that will be passed to the load_method when it’s called.

• priority – Int of the relative priority which allows remote methods to be called in a
specific order. Default is 0. Higher values will be called first.

• **kwargs – Any additional keyword arguments specified will be passed to the
load_method.

Note that these methods will be called once, when the mode code is first initialized during the MPF boot
process.

register_start_method(start_method, config_section_name=None, priority=0, **kwargs)
Register a method which is called when the mode is started.

Used by core components, plugins, etc. to register themselves with the Mode Controller for anything that
they a mode to do when it starts.

Parameters

• start_method – The method that will be called when this mode code loads.

• config_section_name – An optional string for the section of the configuration file
that will be passed to the start_method when it’s called.

• priority – Int of the relative priority which allows remote methods to be called in a
specific order. Default is 0. Higher values will be called first.

• **kwargs – Any additional keyword arguments specified will be passed to the
start_method.

Note that these methods will be called every single time this mode is started.

register_stop_method(callback, priority=0)
Register a method which is called when the mode is stopped.

These are universal, in that they’re called every time a mode stops priority is the priority they’re called.
Has nothing to do with mode priority.

40 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.33.49

remove_start_method(start_method, config_section_name=None, priority=0, **kwargs)
Remove an existing start method.

remove_stop_method(callback, priority=0)
Remove an existing stop method.

set_mode_state(mode, active)
Called when a mode goes active or inactive.

self.machine.placeholder_manager

class mpf.core.placeholder_manager.PlaceholderManager(machine)
Bases: mpf.core.placeholder_manager.BasePlaceholderManager

Manages templates and placeholders for MPF.

Accessing the placeholder_manager in code

There is only one instance of the placeholder_manager in MPF, and it’s accessible via self.machine.
placeholder_manager.

Methods & Attributes

The placeholder_manager has the following methods & attributes available. Note that methods & attributes
inherited from base classes are not included here.

get_global_parameters(name)
Return global params.

self.machine.service

class mpf.core.service_controller.ServiceController(machine)
Bases: mpf.core.mpf_controller.MpfController

Provides all service information and can perform service tasks.

Accessing the service in code

There is only one instance of the service in MPF, and it’s accessible via self.machine.service.

Methods & Attributes

The service has the following methods & attributes available. Note that methods & attributes inherited from
base classes are not included here.

get_coil_map()→ [<class ’mpf.core.service_controller.CoilMap’>]
Return a map of all coils in the machine.

get_switch_map()
Return a map of all switches in the machine.

is_in_service()→ bool
Return true if in service mode.

7.3. API Reference 41

MPF Documentation Developer Documentation, Release 0.33.49

start_service()
Start service mode.

stop_service()
Stop service mode.

self.machine.settings

class mpf.core.settings_controller.SettingsController(machine)
Bases: mpf.core.mpf_controller.MpfController

Manages operator controllable settings.

_settings
dict[str, SettingEntry] – Available settings

Accessing the settings in code

There is only one instance of the settings in MPF, and it’s accessible via self.machine.settings.

Methods & Attributes

The settings has the following methods & attributes available. Note that methods & attributes inherited from
base classes are not included here.

add_setting(setting: mpf.core.settings_controller.SettingEntry)
Add a setting.

get_setting_value(setting_name)
Return the current value of a setting.

get_setting_value_label(setting_name)
Return label for value.

get_settings()→ {<class ’mpf.core.settings_controller.SettingEntry’>, <class ’str’>}
Return all available settings.

set_setting_value(setting_name, value)
Set the value of a setting.

self.machine.shot_profile_manager

class mpf.core.shot_profile_manager.ShotProfileManager(machine)
Bases: object

Controller for show profiles.

Accessing the shot_profile_manager in code

There is only one instance of the shot_profile_manager in MPF, and it’s accessible via self.machine.
shot_profile_manager.

42 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.33.49

Methods & Attributes

The shot_profile_manager has the following methods & attributes available. Note that methods & attributes
inherited from base classes are not included here.

mode_start_for_shot_groups(config, priority, mode, **kwargs)
Apply profiles to member shots of a dict of shot groups.

Parameters

• config – Dict containing shot groups. Keys are shot group names. Values are settings
for each shot group.

• priority – Int of the priority these profiles will be applied at. unused.

• mode – A Mode class object for the mode which is applying these profiles. Used as the
key to remove the profiles a specific mode applied later.

• kwargs – unused

mode_start_for_shots(config, mode, **kwargs)
Set the shots’ enable_tables.

Called on mode start.

mode_stop_for_shot_groups(mode)
Remove all the profiles that were applied to shots based on shot group settings in a mode.

Parameters mode – A Mode class which represents the mode that applied the profiles originally
which will be used to determine which shot profiles should be removed.

mode_stop_for_shots(mode)
Remove shot profile from mode.

process_profile_config(profile_name, config)
Process a shot profile config to convert everything to the format the shot controller needs.

Parameters config – Dict of the profile settings to process.

register_profile(name, profile)
Register a new shot profile with the shot controller which will allow it to be applied to shots.

Parameters

• name – String name of the profile you’re registering.

• profile – Dict of the profile settings.

register_profiles(config, **kwargs)
Register multiple shot profiles.

Parameters

• config – Dict containing the profiles you’re registering. Keys are profile names, values
are dictionaries of profile settings.

• kwargs – unused

self.machine.show_controller

class mpf.core.show_controller.ShowController(machine)
Bases: mpf.core.mpf_controller.MpfController

Manages all the shows in a pinball machine.

7.3. API Reference 43

MPF Documentation Developer Documentation, Release 0.33.49

’hardware shows’ are coordinated light, flasher, coil, and event effects. The ShowController handles priorities,
restores, running and stopping Shows, etc. There should be only one per machine.

Parameters machine – Parent machine object.

Accessing the show_controller in code

There is only one instance of the show_controller in MPF, and it’s accessible via self.machine.
show_controller.

Methods & Attributes

The show_controller has the following methods & attributes available. Note that methods & attributes inherited
from base classes are not included here.

get_next_show_id()
Return the next show id.

get_running_shows(name)
Return a list of running shows by show name or instance name.

Parameters name – String name of the running shows you want to get. This can be a show
name (which will return all running instances of that show) or a key (which will also return
all running show instances that have that instance name).

Returns A list of RunningShow() objects.

notify_show_starting(show)
Register a running show.

notify_show_stopping(show)
Remove a running show.

register_show(name, settings)
Register a named show.

self.machine.switch_controller

class mpf.core.switch_controller.SwitchController(machine)
Bases: mpf.core.mpf_controller.MpfController

Handles all switches in the machine.

Base class for the switch controller, which is responsible for receiving all switch activity in the machine and
converting them into events.

More info: http://docs.missionpinball.org/en/latest/core/switch_controller.html

Accessing the switch_controller in code

There is only one instance of the switch_controller in MPF, and it’s accessible via self.machine.
switch_controller.

44 Chapter 7. Index

http://docs.missionpinball.org/en/latest/core/switch_controller.html

MPF Documentation Developer Documentation, Release 0.33.49

Methods & Attributes

The switch_controller has the following methods & attributes available. Note that methods & attributes inherited
from base classes are not included here.

add_monitor(monitor)
Add a monitor callback which is called on switch changes.

add_switch_handler(switch_name, callback, state=1, ms=0, return_info=False, call-
back_kwargs=None)→ mpf.core.switch_controller.SwitchHandler

Register a handler to take action on a switch event.

Parameters

• switch_name – String name of the switch you’re adding this handler for.

• callback – The method you want called when this switch handler fires.

• state – Integer of the state transition you want to callback to be triggered on. Default is
1 which means it’s called when the switch goes from inactive to active, but you can also
use 0 which means your callback will be called when the switch becomes inactive

• ms – Integer. If you specify a ’ms’ parameter, the handler won’t be called until the witch
is in that state for that many milliseconds (rounded up to the nearst machine timer tick).

• return_info – If True, the switch controller will pass the parameters of the switch
handler as arguments to the callback, including switch_name, state, and ms. If False
(default), it just calls the callback with no parameters.

• callback_kwargs – Additional kwargs that will be passed with the callback.

You can mix & match entries for the same switch here.

static get_active_event_for_switch(switch_name)
Return the event name which is posted when switch_name becomes active.

get_next_timed_switch_event()
Return time of the next timed switch event.

is_active(switch_name, ms=None)
Query whether a switch is active.

Returns True if the current switch is active. If optional arg ms is passed, will only return true if switch has
been active for that many ms.

Note this method does consider whether a switch is NO or NC. So an NC switch will show as active if it
is open, rather than closed.

is_inactive(switch_name, ms=None)
Query whether a switch is inactive.

Returns True if the current switch is inactive. If optional arg ms is passed, will only return true if switch
has been inactive for that many ms.

Note this method does consider whether a switch is NO or NC. So an NC switch will show as active if it
is closed, rather than open.

is_state(switch_name, state, ms=0)
Check if switch is in state.

Query whether a switch is in a given state and (optionally) whether it has been in that state for the specified
number of ms.

7.3. API Reference 45

MPF Documentation Developer Documentation, Release 0.33.49

Returns True if the switch_name has been in the state for the given number of ms. If ms is not specified,
returns True if the switch is in the state regardless of how long it’s been in that state.

log_active_switches(**kwargs)
Write out entries to the log file of all switches that are currently active.

This is used to set the "initial" switch states of standalone testing tools, like our log file playback utility,
but it might be useful in other scenarios when weird things are happening.

This method dumps these events with logging level "INFO."

ms_since_change(switch_name)
Return the number of ms that have elapsed since this switch last changed state.

process_switch(name, state=1, logical=False)
Process a new switch state change for a switch by name.

Parameters

• name – The string name of the switch.

• state – Boolean or int of state of the switch you’re processing, True/1 is active, False/0
is inactive.

• logical – Boolean which specifies whether the ’state’ argument represents the "physi-
cal" or "logical" state of the switch. If True, a 1 means this switch is active and a 0 means
it’s inactive, regardless of the NC/NO configuration of the switch. If False, then the state
paramenter passed will be inverted if the switch is configured to be an ’NC’ type. Typ-
ically the hardware will send switch states in their raw (logical=False) states, but other
interfaces like the keyboard and OSC will use logical=True.

This is the method that is called by the platform driver whenever a switch changes state. It’s also used by
the "other" modules that activate switches, including the keyboard and OSC interfaces.

State 0 means the switch changed from active to inactive, and 1 means it changed from inactive to active.
(The hardware & platform code handles NC versus NO switches and translates them to ’active’ versus
’inactive’.)

process_switch_by_num(num, state, platform, logical=False)
Process a switch state change by switch number.

process_switch_obj(obj: mpf.devices.switch.Switch, state, logical)
Process a new switch state change for a switch by name.

Parameters

• obj – The switch object.

• state – Boolean or int of state of the switch you’re processing, True/1 is active, False/0
is inactive.

• logical – Boolean which specifies whether the ’state’ argument represents the "physi-
cal" or "logical" state of the switch. If True, a 1 means this switch is active and a 0 means
it’s inactive, regardless of the NC/NO configuration of the switch. If False, then the state
paramenter passed will be inverted if the switch is configured to be an ’NC’ type. Typ-
ically the hardware will send switch states in their raw (logical=False) states, but other
interfaces like the keyboard and OSC will use logical=True.

This is the method that is called by the platform driver whenever a switch changes state. It’s also used by
the "other" modules that activate switches, including the keyboard and OSC interfaces.

46 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.33.49

State 0 means the switch changed from active to inactive, and 1 means it changed from inactive to active.
(The hardware & platform code handles NC versus NO switches and translates them to ’active’ versus
’inactive’.)

register_switch(name)
Populate self.registered_switches.

Parameters name – Name of switch

remove_monitor(monitor)
Remove a monitor callback.

remove_switch_handler(switch_name, callback, state=1, ms=0)
Remove a registered switch handler.

Currently this only works if you specify everything exactly as you set it up. (Except for return_info, which
doesn’t matter if true or false, it will remove either / both.

remove_switch_handler_by_key(switch_handler: mpf.core.switch_controller.SwitchHandler)
Remove switch hander by key returned from add_switch_handler.

set_state(switch_name, state=1, reset_time=False)
Set the state of a switch.

update_switches_from_hw()
Update the states of all the switches be re-reading the states from the hardware platform.

This method works silently and does not post any events if any switches changed state.

verify_switches()→ bool
Verify that switches states match the hardware.

Loop through all the switches and queries their hardware states via their platform interfaces and them
compares that to the state that MPF thinks the switches are in.

Throws logging warnings if anything doesn’t match.

This method is notification only. It doesn’t fix anything.

wait_for_any_switch(switch_names: [<class ’str’>], state: int = 1, only_on_change=True,
ms=0)

Wait for the first switch in the list to change into state.

wait_for_switch(switch_name: str, state: int = 1, only_on_change=True, ms=0)
Wait for a switch to change into state.

self.machine.switch_player

class mpf.plugins.switch_player.SwitchPlayer(machine)
Bases: object

Plays switches from config.

Accessing the switch_player in code

There is only one instance of the switch_player in MPF, and it’s accessible via self.machine.
switch_player.

7.3. API Reference 47

MPF Documentation Developer Documentation, Release 0.33.49

Methods & Attributes

The switch_player has the following methods & attributes available. Note that methods & attributes inherited
from base classes are not included here.

7.3.2 Devices

Instances of MPF devices, available at self.machine.*device_collection*.*device_name*. For ex-
ample, a flipper device called "right_flipper" is at self.machine.flippers.right_flipper, and a multiball
called "awesome" is accessible at self.machine.multiballs.awesome.

Note that device collections are accessible as attributes and items, so the right flipper mentioned above is also available
to programmers at self.machine.flippers['right_flipper'].

Note: "Devices" in MPF are more than physical hardware devices. Many of the "game logic" components listed in
the user documentation (achievements, ball holds, extra balls, etc.) are implemented as "devices" in MPF code. (So
you can think of devices as being either physical or logical.)

Here’s a list of all the device types in MPF, linked to their API references.

self.machine.accelerometers.*

class mpf.devices.accelerometer.Accelerometer(self_inner, *args, **kwargs)
Bases: mpf.core.system_wide_device.SystemWideDevice

Implement an accelerometer.

Args: Same as the Device parent class

Accessing accelerometers in code

The device collection which contains the accelerometers in your machine is available via self.machine.
accelerometers. For example, to access one called "foo", you would use self.machine.
accelerometers.foo. You can also access accelerometers in dictionary form, e.g. self.machine.
accelerometers['foo'].

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

Methods & Attributes

Accelerometers have the following methods & attributes available. Note that methods & attributes inherited
from base classes are not included here.

get_level_xyz()
Return current 3D level.

get_level_xz()
Return current 2D x/z level.

get_level_yz()
Return current 2D y/z level.

48 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.33.49

update_acceleration(x, y, z)
Calculate acceleration based on readings from hardware.

self.machine.achievement_groups.*

class mpf.devices.achievement_group.AchievementGroup(self_inner, *args, **kwargs)
Bases: mpf.core.mode_device.ModeDevice

An achievement group in a pinball machine.

It is tracked per player and can automatically restore state on the next ball.

Accessing achievement_groups in code

The device collection which contains the achievement_groups in your machine is available via self.
machine.achievement_groups. For example, to access one called "foo", you would use self.
machine.achievement_groups.foo. You can also access achievement_groups in dictionary form, e.g.
self.machine.achievement_groups['foo'].

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

Methods & Attributes

Achievement_groups have the following methods & attributes available. Note that methods & attributes inher-
ited from base classes are not included here.

disable(**kwargs)
Disable achievement group.

enable(**kwargs)
Enable achievement group.

enabled
Return enabled state.

member_state_changed()
Notify the group that one of its members has changed state.

rotate_left(**kwargs)
Rotate to the left.

rotate_right(reverse=False, **kwargs)
Rotate to the right.

select_random_achievement(**kwargs)
Select a random achievement.

start_selected(**kwargs)
Start the currently selected achievement.

self.machine.achievements.*

class mpf.devices.achievement.Achievement(self_inner, *args, **kwargs)
Bases: mpf.core.mode_device.ModeDevice

An achievement in a pinball machine.

7.3. API Reference 49

MPF Documentation Developer Documentation, Release 0.33.49

It is tracked per player and can automatically restore state on the next ball.

Accessing achievements in code

The device collection which contains the achievements in your machine is available via self.
machine.achievements. For example, to access one called "foo", you would use self.machine.
achievements.foo. You can also access achievements in dictionary form, e.g. self.machine.
achievements['foo'].

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

Methods & Attributes

Achievements have the following methods & attributes available. Note that methods & attributes inherited from
base classes are not included here.

add_to_group(group)
Add this achievement to an achievement group.

Parameters group – The achievement group to add this achievement to.

complete(**kwargs)
Complete achievement.

disable(**kwargs)
Disable achievement.

enable(**kwargs)
Enable the achievement.

It can only start if it was enabled before.

remove_from_group(group)
Remove this achievement from an achievement group.

Parameters group – The achievement group to remove this achievement from.

reset(**kwargs)
Reset the achievement to its initial state.

select(**kwargs)
Highlight (select) this achievement.

start(**kwargs)
Start achievement.

state
Return current state.

stop(**kwargs)
Stop achievement.

self.machine.autofires.*

class mpf.devices.autofire.AutofireCoil(self_inner, *args, **kwargs)
Bases: mpf.core.system_wide_device.SystemWideDevice

Coils in the pinball machine which should fire automatically based on switch hits using hardware switch rules.

50 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.33.49

autofire_coils are used when you want the coils to respond "instantly" without waiting for the lag of the python
game code running on the host computer.

Examples of autofire_coils are pop bumpers, slingshots, and flippers.

Args: Same as Device.

Accessing autofires in code

The device collection which contains the autofires in your machine is available via self.machine.
autofires. For example, to access one called "foo", you would use self.machine.autofires.foo.
You can also access autofires in dictionary form, e.g. self.machine.autofires['foo'].

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

Methods & Attributes

Autofires have the following methods & attributes available. Note that methods & attributes inherited from base
classes are not included here.

disable(**kwargs)
Disable the autofire coil rule.

enable(**kwargs)
Enable the autofire coil rule.

self.machine.ball_devices.*

class mpf.devices.ball_device.ball_device.BallDevice(self_inner, *args, **kwargs)
Bases: mpf.core.system_wide_device.SystemWideDevice

Base class for a ’Ball Device’ in a pinball machine.

A ball device is anything that can hold one or more balls, such as a trough, an eject hole, a VUK, a catapult, etc.

Args: Same as Device.

Accessing ball_devices in code

The device collection which contains the ball_devices in your machine is available via self.machine.
ball_devices. For example, to access one called "foo", you would use self.machine.
ball_devices.foo. You can also access ball_devices in dictionary form, e.g. self.machine.
ball_devices['foo'].

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

Methods & Attributes

Ball_devices have the following methods & attributes available. Note that methods & attributes inherited from
base classes are not included here.

add_incoming_ball(incoming_ball: mpf.devices.ball_device.incoming_balls_handler.IncomingBall)
Notify this device that there is a ball heading its way.

7.3. API Reference 51

MPF Documentation Developer Documentation, Release 0.33.49

available_balls = None
Number of balls that are available to be ejected. This differs from balls since it’s possible that this device
could have balls that are being used for some other eject, and thus not available.

balls
Return the number of balls we expect in the near future.

cancel_path_if_target_is(start, target)
Check if the ball is going to a certain target and cancel the path in that case.

capacity
Return the ball capacity.

eject(balls=1, target=None, **kwargs)
Eject ball to target.

eject_all(target=None, **kwargs)
Eject all the balls from this device.

Parameters

• target – The string or BallDevice target for this eject. Default of None means playfield.

• **kwargs – unused

Returns True if there are balls to eject. False if this device is empty.

entrance(**kwargs)
Event handler for entrance events.

expected_ball_received()
Handle an expected ball.

find_available_ball_in_path(start)
Try to remove available ball at the end of the path.

find_next_trough()
Find next trough after device.

find_one_available_ball(path=deque([]))
Find a path to a source device which has at least one available ball.

find_path_to_target(target)
Find a path to this target.

hold(**kwargs)
Event handler for hold event.

classmethod is_playfield()
Return True if this ball device is a Playfield-type device, False if it’s a regular ball device.

lost_ejected_ball(target)
Handle an outgoing lost ball.

lost_idle_ball()
Lost an ball while the device was idle.

lost_incoming_ball(source)
Handle lost ball which was confirmed to have left source.

remove_incoming_ball(incoming_ball: mpf.devices.ball_device.incoming_balls_handler.IncomingBall)
Remove a ball from the incoming balls queue.

request_ball(balls=1, **kwargs)
Request that one or more balls is added to this device.

52 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.33.49

Parameters

• balls – Integer of the number of balls that should be added to this device. A value of -1
will cause this device to try to fill itself.

• **kwargs – unused

set_eject_state(state)
Set the current device state.

setup_eject_chain(path, player_controlled=False)
Setup an eject chain.

setup_eject_chain_next_hop(path, player_controlled)
Setup one hop of the eject chain.

setup_player_controlled_eject(target=None)
Setup a player controlled eject.

state
Return the device state.

stop(**kwargs)
Stop device.

unexpected_ball_received()
Handle an unexpected ball.

wait_for_ready_to_receive(source)
Wait until this device is ready to receive a ball.

self.machine.ball_holds.*

class mpf.devices.ball_hold.BallHold(self_inner, *args, **kwargs)
Bases: mpf.core.system_wide_device.SystemWideDevice, mpf.core.mode_device.
ModeDevice

Ball hold device which can be used to keep balls in ball devices and control their eject later on.

Accessing ball_holds in code

The device collection which contains the ball_holds in your machine is available via self.machine.
ball_holds. For example, to access one called "foo", you would use self.machine.ball_holds.
foo. You can also access ball_holds in dictionary form, e.g. self.machine.ball_holds['foo'].

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

Methods & Attributes

Ball_holds have the following methods & attributes available. Note that methods & attributes inherited from
base classes are not included here.

disable(**kwargs)
Disable the hold.

If the hold is not enabled, no balls will be held.

Parameters **kwargs – unused

7.3. API Reference 53

MPF Documentation Developer Documentation, Release 0.33.49

enable(**kwargs)
Enable the hold.

If the hold is not enabled, no balls will be held.

Parameters **kwargs – unused

is_full()
Return true if hold is full.

release_all(**kwargs)
Release all balls in hold.

release_balls(balls_to_release)
Release all balls and return the actual amount of balls released.

Parameters balls_to_release – number of ball to release from hold

release_one(**kwargs)
Release one ball.

Parameters **kwargs – unused

release_one_if_full(**kwargs)
Release one ball if hold is full.

remaining_space_in_hold()
Return the remaining capacity of the hold.

reset(**kwargs)
Reset the hold.

Will release held balls. Device status will stay the same (enabled/disabled). It will wait for those balls to
drain and block ball_ending until they do. Those balls are not included in ball_in_play.

Parameters **kwargs – unused

self.machine.ball_locks.*

class mpf.devices.ball_lock.BallLock(self_inner, *args, **kwargs)
Bases: mpf.core.system_wide_device.SystemWideDevice, mpf.core.mode_device.
ModeDevice

Ball lock device which can be used to keep balls in ball devices and control their eject later on.

Accessing ball_locks in code

The device collection which contains the ball_locks in your machine is available via self.machine.
ball_locks. For example, to access one called "foo", you would use self.machine.ball_locks.
foo. You can also access ball_locks in dictionary form, e.g. self.machine.ball_locks['foo'].

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

Methods & Attributes

Ball_locks have the following methods & attributes available. Note that methods & attributes inherited from
base classes are not included here.

54 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.33.49

disable(**kwargs)
Disable the lock.

If the lock is not enabled, no balls will be locked.

Parameters **kwargs – unused

enable(**kwargs)
Enable the lock.

If the lock is not enabled, no balls will be locked.

Parameters **kwargs – unused

is_full()
Return true if lock is full.

release_all_balls()
Release all balls in lock.

release_balls(balls_to_release)
Release all balls and return the actual amount of balls released.

Parameters balls_to_release – number of ball to release from lock

release_one(**kwargs)
Release one ball.

Parameters **kwargs – unused

release_one_if_full(**kwargs)
Release one ball if lock is full.

remaining_space_in_lock()
Return the remaining capacity of the lock.

reset(**kwargs)
Reset the lock.

Will release locked balls. Device will status will stay the same (enabled/disabled). It will wait for those
balls to drain and block ball_ending until they did. Those balls are not included in ball_in_play.

Parameters **kwargs – unused

self.machine.ball_saves.*

class mpf.devices.ball_save.BallSave(self_inner, *args, **kwargs)
Bases: mpf.core.system_wide_device.SystemWideDevice, mpf.core.mode_device.
ModeDevice

Ball save device which will give back the ball within a certain time.

Accessing ball_saves in code

The device collection which contains the ball_saves in your machine is available via self.machine.
ball_saves. For example, to access one called "foo", you would use self.machine.ball_saves.
foo. You can also access ball_saves in dictionary form, e.g. self.machine.ball_saves['foo'].

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

7.3. API Reference 55

MPF Documentation Developer Documentation, Release 0.33.49

Methods & Attributes

Ball_saves have the following methods & attributes available. Note that methods & attributes inherited from
base classes are not included here.

delayed_eject(**kwargs)
Trigger eject of all scheduled balls.

disable(**kwargs)→ None
Disable ball save.

early_ball_save(**kwargs)→ None
Perform early ball save if enabled.

enable(**kwargs)→ None
Enable ball save.

timer_start(**kwargs)→ None
Start the timer.

This is usually called after the ball was ejected while the ball save may have been enabled earlier.

self.machine.coils.*

class mpf.devices.driver.Driver(machine: mpf.core.machine.MachineController, name: str)
Bases: mpf.core.system_wide_device.SystemWideDevice

Generic class that holds driver objects.

A ’driver’ is any device controlled from a driver board which is typically the high-voltage stuff like coils and
flashers.

This class exposes the methods you should use on these driver types of devices. Each platform module (i.e.
P-ROC, FAST, etc.) subclasses this class to actually communicate with the physical hardware and perform the
actions.

Args: Same as the Device parent class

Accessing coils in code

The device collection which contains the coils in your machine is available via self.machine.coils. For
example, to access one called "foo", you would use self.machine.coils.foo. You can also access coils
in dictionary form, e.g. self.machine.coils['foo'].

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

Methods & Attributes

Coils have the following methods & attributes available. Note that methods & attributes inherited from base
classes are not included here.

clear_hw_rule(switch: mpf.devices.switch.Switch)
Clear all rules for switch and this driver.

Parameters switch – Switch to clear on this driver.

disable(**kwargs)
Disable this driver.

56 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.33.49

enable(**kwargs)
Enable a driver by holding it ’on’.

If this driver is configured with a holdpatter, then this method will use that holdpatter to pwm pulse the
driver.

If not, then this method will just enable the driver. As a safety precaution, if you want to enable() this
driver without pwm, then you have to add the following option to this driver in your machine configuration
files:

allow_enable: True

get_configured_driver()
Return a configured hw driver.

pulse(milliseconds: int = None, power: float = None, **kwargs)
Pulse this driver.

Parameters

• milliseconds – The number of milliseconds the driver should be enabled for. If no
value is provided, the driver will be enabled for the value specified in the config dictionary.

• power – A multiplier that will be applied to the default pulse time, typically a float be-
tween 0.0 and 1.0. (Note this is can only be used if milliseconds is also specified.)

set_pulse_on_hit_and_enable_and_release_and_disable_rule(enable_switch:
mpf.devices.switch.Switch,
disable_switch:
mpf.devices.switch.Switch)

Add pulse on hit and enable and release and disable rule to driver.

Pulse and then enable driver. Cancel pulse and enable when switch is released or a disable switch is hit.

Parameters

• enable_switch – Switch which triggers the rule.

• disable_switch – Switch which disables the rule.

set_pulse_on_hit_and_enable_and_release_rule(enable_switch:
mpf.devices.switch.Switch)

Add pulse on hit and enable and relase rule to driver.

Pulse and enable a driver. Cancel pulse and enable if switch is released.

Parameters enable_switch – Switch which triggers the rule.

set_pulse_on_hit_and_release_rule(enable_switch: mpf.devices.switch.Switch)
Add pulse on hit and relase rule to driver.

Pulse a driver but cancel pulse when switch is released.

Parameters enable_switch – Switch which triggers the rule.

set_pulse_on_hit_rule(enable_switch: mpf.devices.switch.Switch)
Add pulse on hit rule to driver.

Alway do the full pulse. Even when the switch is released.

Parameters enable_switch – Switch which triggers the rule.

7.3. API Reference 57

MPF Documentation Developer Documentation, Release 0.33.49

self.machine.combo_switches.*

class mpf.devices.combo_switch.ComboSwitch(self_inner, *args, **kwargs)
Bases: mpf.core.system_wide_device.SystemWideDevice, mpf.core.mode_device.
ModeDevice

Combo Switch device.

Accessing combo_switches in code

The device collection which contains the combo_switches in your machine is available via self.
machine.combo_switches. For example, to access one called "foo", you would use self.machine.
combo_switches.foo. You can also access combo_switches in dictionary form, e.g. self.machine.
combo_switches['foo'].

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

Methods & Attributes

Combo_switches have the following methods & attributes available. Note that methods & attributes inherited
from base classes are not included here.

state
Return current state.

self.machine.diverters.*

class mpf.devices.diverter.Diverter(self_inner, *args, **kwargs)
Bases: mpf.core.system_wide_device.SystemWideDevice

Represents a diverter in a pinball machine.

Args: Same as the Device parent class.

Accessing diverters in code

The device collection which contains the diverters in your machine is available via self.machine.
diverters. For example, to access one called "foo", you would use self.machine.diverters.foo.
You can also access diverters in dictionary form, e.g. self.machine.diverters['foo'].

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

Methods & Attributes

Diverters have the following methods & attributes available. Note that methods & attributes inherited from base
classes are not included here.

activate(**kwargs)
Physically activate this diverter’s coil.

58 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.33.49

deactivate(**kwargs)
Deactivate this diverter.

This method will disable the activation_coil, and (optionally) if it’s configured with a deactivation coil, it
will pulse it.

disable(auto=False, **kwargs)
Disable this diverter.

This method will remove the hardware rule if this diverter is activated via a hardware switch.

Parameters

• auto – Boolean value which is used to indicate whether this diverter disabled itself auto-
matically. This is passed to the event which is posted.

• **kwargs – This is here because this disable method is called by whatever event the
game programmer specifies in their machine configuration file, so we don’t know what
event that might be or whether it has random kwargs attached to it.

enable(auto=False, **kwargs)
Enable this diverter.

Parameters

• auto – Boolean value which is used to indicate whether this diverter enabled itself auto-
matically. This is passed to the event which is posted.

• **kwargs – unused

If an ’activation_switches’ is configured, then this method writes a hardware autofire rule to the pinball
controller which fires the diverter coil when the switch is activated.

If no activation_switches is specified, then the diverter is activated immediately.

reset(**kwargs)
Reset and deactivate the diverter.

schedule_deactivation()
Schedule a delay to deactivate this diverter.

self.machine.drop_target_banks.*

class mpf.devices.drop_target.DropTargetBank(self_inner, *args, **kwargs)
Bases: mpf.core.system_wide_device.SystemWideDevice, mpf.core.mode_device.
ModeDevice

A bank of drop targets in a pinball machine by grouping together multiple DropTarget class devices.

Accessing drop_target_banks in code

The device collection which contains the drop_target_banks in your machine is available via self.machine.
drop_target_banks. For example, to access one called "foo", you would use self.machine.
drop_target_banks.foo. You can also access drop_target_banks in dictionary form, e.g. self.
machine.drop_target_banks['foo'].

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

7.3. API Reference 59

MPF Documentation Developer Documentation, Release 0.33.49

Methods & Attributes

Drop_target_banks have the following methods & attributes available. Note that methods & attributes inherited
from base classes are not included here.

member_target_change()
A member drop target has changed state.

This method causes this group to update its down and up counts and complete status.

reset(**kwargs)
Reset this bank of drop targets.

This method has some intelligence to figure out what coil(s) it should fire. It builds up a set by looking
at its own reset_coil and reset_coils settings, and also scanning through all the member drop targets and
collecting their coils. Then it pulses each of them. (This coil list is a "set" which means it only sends a
single pulse to each coil, even if each drop target is configured with its own coil.)

self.machine.drop_targets.*

class mpf.devices.drop_target.DropTarget(self_inner, *args, **kwargs)
Bases: mpf.core.system_wide_device.SystemWideDevice

Represents a single drop target in a pinball machine.

Args: Same as the Target parent class

Accessing drop_targets in code

The device collection which contains the drop_targets in your machine is available via self.machine.
drop_targets. For example, to access one called "foo", you would use self.machine.
drop_targets.foo. You can also access drop_targets in dictionary form, e.g. self.machine.
drop_targets['foo'].

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

Methods & Attributes

Drop_targets have the following methods & attributes available. Note that methods & attributes inherited from
base classes are not included here.

add_to_bank(bank)
Add this drop target to a drop target bank.

This allows the bank to update its status based on state changes to this drop target.

Parameters bank – DropTargetBank object to add this drop target to.

disable_keep_up(**kwargs)
No longer keep up the target up.

enable_keep_up(**kwargs)
Keep the target up by enabling the coil.

knockdown(**kwargs)
Pulse the knockdown coil to knock down this drop target.

60 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.33.49

remove_from_bank(bank)
Remove the DropTarget from a bank.

Parameters bank – DropTargetBank object to remove

reset(**kwargs)
Reset this drop target.

If this drop target is configured with a reset coil, then this method will pulse that coil. If not, then it checks
to see if this drop target is part of a drop target bank, and if so, it calls the reset() method of the drop target
bank.

This method does not reset the target profile, however, the switch event handler should reset the target
profile on its own when the drop target physically moves back to the up position.

self.machine.dual_wound_coils.*

class mpf.devices.dual_wound_coil.DualWoundCoil(machine, name)
Bases: mpf.core.system_wide_device.SystemWideDevice

An instance of a dual wound coil which consists of two coils.

Accessing dual_wound_coils in code

The device collection which contains the dual_wound_coils in your machine is available via self.machine.
dual_wound_coils. For example, to access one called "foo", you would use self.machine.
dual_wound_coils.foo. You can also access dual_wound_coils in dictionary form, e.g. self.
machine.dual_wound_coils['foo'].

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

Methods & Attributes

Dual_wound_coils have the following methods & attributes available. Note that methods & attributes inherited
from base classes are not included here.

disable(**kwargs)
Disable a driver.

enable(**kwargs)
Enable a dual wound coil.

Pulse main coil and enable hold coil.

pulse(milliseconds: int = None, power: float = None, **kwargs)
Pulse this driver.

Parameters

• milliseconds – The number of milliseconds the driver should be enabled for. If no
value is provided, the driver will be enabled for the value specified in the config dictionary.

• power – A multiplier that will be applied to the default pulse time, typically a float be-
tween 0.0 and 1.0. (Note this is can only be used if milliseconds is also specified.)

7.3. API Reference 61

MPF Documentation Developer Documentation, Release 0.33.49

self.machine.extra_balls.*

class mpf.devices.extra_ball.ExtraBall(machine, name)
Bases: mpf.core.mode_device.ModeDevice

An extra ball which can be awarded once per player.

Accessing extra_balls in code

The device collection which contains the extra_balls in your machine is available via self.machine.
extra_balls. For example, to access one called "foo", you would use self.machine.extra_balls.
foo. You can also access extra_balls in dictionary form, e.g. self.machine.extra_balls['foo'].

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

Methods & Attributes

Extra_balls have the following methods & attributes available. Note that methods & attributes inherited from
base classes are not included here.

award(**kwargs)
Award extra ball to player if enabled.

reset(**kwargs)
Reset extra ball.

Does not reset the additional ball the player received. Only resets the device and allows to award another
extra ball to the player.

self.machine.flashers.*

class mpf.devices.flasher.Flasher(machine, name)
Bases: mpf.core.system_wide_device.SystemWideDevice

Generic class that holds flasher objects.

Accessing flashers in code

The device collection which contains the flashers in your machine is available via self.machine.
flashers. For example, to access one called "foo", you would use self.machine.flashers.foo.
You can also access flashers in dictionary form, e.g. self.machine.flashers['foo'].

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

Methods & Attributes

Flashers have the following methods & attributes available. Note that methods & attributes inherited from base
classes are not included here.

flash(milliseconds=None, **kwargs)
Flashe the flasher.

62 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.33.49

Parameters milliseconds – Int of how long you want the flash to be, in ms. Default is None
which causes the flasher to flash for whatever its default config is, either its own flash_ms or
the core- wide default_flash_ms settings. (Current default is 50ms.)

get_configured_driver()
Reconfigure driver.

self.machine.flippers.*

class mpf.devices.flipper.Flipper(self_inner, *args, **kwargs)
Bases: mpf.core.system_wide_device.SystemWideDevice

Represents a flipper in a pinball machine. Subclass of Device.

Contains several methods for actions that can be performed on this flipper, like enable(), disable(), etc.

Flippers have several options, including player buttons, EOS swtiches, multiple coil options (pulsing, hold coils,
etc.)

Parameters

• machine – A reference to the machine controller instance.

• name – A string of the name you’ll refer to this flipper object as.

Accessing flippers in code

The device collection which contains the flippers in your machine is available via self.machine.
flippers. For example, to access one called "foo", you would use self.machine.flippers.foo.
You can also access flippers in dictionary form, e.g. self.machine.flippers['foo'].

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

Methods & Attributes

Flippers have the following methods & attributes available. Note that methods & attributes inherited from base
classes are not included here.

disable(**kwargs)
Disable the flipper.

This method makes it so the cabinet flipper buttons no longer control the flippers. Used when no game is
active and when the player has tilted.

enable(**kwargs)
Enable the flipper by writing the necessary hardware rules to the hardware controller.

The hardware rules for coils can be kind of complex given all the options, so we’ve mapped all the options
out here. We literally have methods to enable the various rules based on the rule letters here, which we’ve
implemented below. Keeps it easy to understand. :)

Note there’s a platform feature saved at: self.machine.config[’platform’][’hw_enable_auto_disable’]. If
True, it means that the platform hardware rules will automatically disable a coil that has been enabled
when the trigger switch is disabled. If False, it means the hardware platform needs its own rule to disable
the coil when the switch is disabled. Methods F and G below check for that feature setting and will not be
applied to the hardware if it’s True.

7.3. API Reference 63

MPF Documentation Developer Documentation, Release 0.33.49

Two coils, using EOS switch to indicate the end of the power stroke: Rule Type Coil Switch Action A.
Enable Main Button active D. Enable Hold Button active E. Disable Main EOS active

One coil, using EOS switch (not implemented): Rule Type Coil Switch Action A. Enable Main Button
active H. PWM Main EOS active

Two coils, not using EOS switch: Rule Type Coil Switch Action B. Pulse Main Button active D. Enable
Hold Button active

One coil, not using EOS switch: Rule Type Coil Switch Action C. Pulse/PWM Main button active

Use EOS switch for safety (for platforms that support mutiple switch rules). Note that this rule is the letter
"i", not a numeral 1. I. Enable power if button is active and EOS is not active

sw_flip(include_switch=False)
Activate the flipper via software as if the flipper button was pushed.

This is needed because the real flipper activations are handled in hardware, so if you want to flip the flippers
with the keyboard or OSC interfaces, you have to call this method.

Note this method will keep this flipper enabled until you call sw_release().

sw_release(include_switch=False)
Deactive the flipper via software as if the flipper button was released.

See the documentation for sw_flip() for details.

self.machine.gis.*

class mpf.devices.gi.Gi(self_inner, *args, **kwargs)
Bases: mpf.core.system_wide_device.SystemWideDevice

Represents a light connected to a traditional lamp matrix in a pinball machine.

This light could be an incandescent lamp or a replacement single-color LED. The key is that they’re connected
up to a lamp matrix.

Accessing gis in code

The device collection which contains the gis in your machine is available via self.machine.gis. For
example, to access one called "foo", you would use self.machine.gis.foo. You can also access gis in
dictionary form, e.g. self.machine.gis['foo'].

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

Methods & Attributes

Gis have the following methods & attributes available. Note that methods & attributes inherited from base
classes are not included here.

add_handler(callback)
Register a handler to be called when this GI changes state.

disable(**kwargs)
Disable this GI string.

enable(brightness=255, **kwargs)
Enable this GI string.

64 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.33.49

Parameters

• brightness – Int from 0-255 of how bright you want this to be. 255 is on. 0 os iff.
Note that not all GI strings on all machines support this.

• fade_ms – How quickly you’d like this GI string to fade to this brightness level. This is
not implemented.

remove_handler(callback=None)
Remove a handler from the list of registered handlers.

self.machine.kickbacks.*

class mpf.devices.kickback.Kickback(self_inner, *args, **kwargs)
Bases: mpf.devices.autofire.AutofireCoil

A kickback device which will fire a ball back into the playfield.

Accessing kickbacks in code

The device collection which contains the kickbacks in your machine is available via self.machine.
kickbacks. For example, to access one called "foo", you would use self.machine.kickbacks.foo.
You can also access kickbacks in dictionary form, e.g. self.machine.kickbacks['foo'].

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

Methods & Attributes

Kickbacks have the following methods & attributes available. Note that methods & attributes inherited from
base classes are not included here.

disable(**kwargs)
Remove switch handler and call parent.

enable(**kwargs)
Add switch handler and call parent.

self.machine.led_rings.*

class mpf.devices.led_group.LedRing(machine: mpf.core.machine.MachineController, name)
Bases: mpf.devices.led_group.LedGroup

A LED ring.

Accessing led_rings in code

The device collection which contains the led_rings in your machine is available via self.machine.
led_rings. For example, to access one called "foo", you would use self.machine.led_rings.foo.
You can also access led_rings in dictionary form, e.g. self.machine.led_rings['foo'].

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

7.3. API Reference 65

MPF Documentation Developer Documentation, Release 0.33.49

Methods & Attributes

Led_rings have the following methods & attributes available. Note that methods & attributes inherited from
base classes are not included here.

color(color, fade_ms=None, priority=0, key=None, mode=None)
Call color on all leds in this group.

get_token()
Return all LEDs in group as token.

self.machine.led_stripes.*

class mpf.devices.led_group.LedStrip(machine: mpf.core.machine.MachineController, name)
Bases: mpf.devices.led_group.LedGroup

A LED stripe.

Accessing led_stripes in code

The device collection which contains the led_stripes in your machine is available via self.machine.
led_stripes. For example, to access one called "foo", you would use self.machine.led_stripes.
foo. You can also access led_stripes in dictionary form, e.g. self.machine.led_stripes['foo'].

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

Methods & Attributes

Led_stripes have the following methods & attributes available. Note that methods & attributes inherited from
base classes are not included here.

color(color, fade_ms=None, priority=0, key=None, mode=None)
Call color on all leds in this group.

get_token()
Return all LEDs in group as token.

self.machine.leds.*

class mpf.devices.led.Led(self_inner, *args, **kwargs)
Bases: mpf.core.system_wide_device.SystemWideDevice

An RGB LED in a pinball machine.

Accessing leds in code

The device collection which contains the leds in your machine is available via self.machine.leds. For
example, to access one called "foo", you would use self.machine.leds.foo. You can also access leds in
dictionary form, e.g. self.machine.leds['foo'].

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

66 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.33.49

Methods & Attributes

Leds have the following methods & attributes available. Note that methods & attributes inherited from base
classes are not included here.

clear_stack()
Remove all entries from the stack and resets this LED to ’off’.

color(color, fade_ms=None, priority=0, key=None, mode=None)
Add or update a color entry in this LED’s stack, which is how you tell this LED what color you want it to
be.

Parameters

• color – RGBColor() instance, or a string color name, hex value, or 3-integer list/tuple of
colors.

• fade_ms – Int of the number of ms you want this LED to fade to the color in. A value of
0 means it’s instant. A value of None (the default) means that it will use this LED’s and/or
the machine’s default fade_ms setting.

• priority – Int value of the priority of these incoming settings. If this LED has current
settings in the stack at a higher priority, the settings you’re adding here won’t take effect.
However they’re still added to the stack, so if the higher priority settings are removed, then
the next-highest apply.

• key – An arbitrary identifier (can be any immutable object) that’s used to identify these
settings for later removal. If any settings in the stack already have this key, those settings
will be replaced with these new settings.

• mode – Optional mode instance of the mode that is setting this color. When a mode ends,
entries from the stack with that mode will automatically be removed.

color_correct(color)
Apply the current color correction profile to the color passed.

Parameters color – The RGBColor() instance you want to get color corrected.

Returns An updated RGBColor() instance with the current color correction profile applied.

Note that if there is no current color correction profile applied, the returned color will be the same as the
color that was passed.

fade_task(dt)
Perform a fade depending on the current time.

Parameters dt – time since last call

gamma_correct(color)
Apply max brightness correction to color.

Parameters color – The RGBColor() instance you want to have gamma applied.

Returns An updated RGBColor() instance with gamma corrected.

get_color()
Return an RGBColor() instance of the ’color’ setting of the highest color setting in the stack.

This is usually the same color as the physical LED, but not always (since physical LEDs are updated once
per frame, this value could vary.

Also note the color returned is the "raw" color that does has not had the color correction profile applied.

7.3. API Reference 67

MPF Documentation Developer Documentation, Release 0.33.49

classmethod mode_stop(mode: mpf.core.mode.Mode)
Remove all entries from mode.

Parameters mode – Mode which was removed

off(fade_ms=None, priority=0, key=None, **kwargs)
Turn LED off.

Parameters

• key – key for removal later on

• priority – priority on stack

• fade_ms – duration of fade

on(fade_ms=None, priority=0, key=None, **kwargs)
Turn LED on.

Parameters

• key – key for removal later on

• priority – priority on stack

• fade_ms – duration of fade

remove_from_stack_by_key(key)
Remove a group of color settings from the stack.

Parameters key – The key of the settings to remove (based on the ’key’ parameter that was
originally passed to the color() method.)

This method triggers a LED update, so if the highest priority settings were removed, the LED will be
updated with whatever’s below it. If no settings remain after these are removed, the LED will turn off.

remove_from_stack_by_mode(mode: mpf.core.mode.Mode)
Remove a group of color settings from the stack.

Parameters mode – Mode which was removed

This method triggers a LED update, so if the highest priority settings were removed, the LED will be
updated with whatever’s below it. If no settings remain after these are removed, the LED will turn off.

set_color_correction_profile(profile)
Apply a color correction profile to this LED.

Parameters profile – An RGBColorCorrectionProfile() instance

stack = None
A list of dicts which represents different commands that have come in to set this LED to a certain color
(and/or fade). Each entry in the list contains the following key/value pairs:

priority: The relative priority of this color command. Higher numbers take precedent, and the high-
est priority entry will be the command that’s currently active. In the event of a tie, whichever entry
was added last wins (based on ’start_time’ below).

start_time: The clock time when this command was added. Primarily used to calculate fades, but
also used as a tie-breaker for multiple entries with the same priority.

start_color: RGBColor() of the color of this LED when this command came in.

dest_time: Clock time that represents when a fade (from start_color to dest_color) will be done. If
this is 0, that means there is no fade. When a fade is complete, this value is reset to 0.

68 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.33.49

dest_color: RGBColor() of the destination this LED is fading to. If a command comes in with no
fade, then this will be the same as the ’color’ below.

color: The current color of the LED based on this command. This value is updated automatically as
fades progress, and it’s the value that’s actually written to the hardware (prior to color correction).

key: An arbitrary unique identifier to keep multiple entries in the stack separate. If a new color com-
mand comes in with a key that already exists for an entry in the stack, that entry will be replaced by
the new entry. The key is also used to remove entries from the stack (e.g. when shows or modes end
and they want to remove their commands from the LED).

mode: Optional mode where the brightness was set. Used to remove entries when a mode ends.

classmethod update_leds(dt)
Write leds to hardware platform.

Called periodically (default at the end of every frame) to write the new led colors to the hardware for the
LEDs that changed during that frame.

Parameters dt – time since last call

write_color_to_hw_driver()
Set color to hardware platform.

Physically update the LED hardware object based on the ’color’ setting of the highest priority setting from
the stack.

This method is automatically called whenever a color change has been made (including when fades are
active).

self.machine.lights.*

class mpf.devices.matrix_light.MatrixLight(self_inner, *args, **kwargs)
Bases: mpf.core.system_wide_device.SystemWideDevice

Represents a light connected to a traditional lamp matrix in a pinball machine.

This light could be an incandescent lamp or a replacement single-color LED. The key is that they’re connected
up to a lamp matrix.

Accessing lights in code

The device collection which contains the lights in your machine is available via self.machine.lights.
For example, to access one called "foo", you would use self.machine.lights.foo. You can also access
lights in dictionary form, e.g. self.machine.lights['foo'].

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

Methods & Attributes

Lights have the following methods & attributes available. Note that methods & attributes inherited from base
classes are not included here.

add_handler(callback)
Register a handler to be called when this light changes state.

Parameters callback – Monitor callback to add

7.3. API Reference 69

MPF Documentation Developer Documentation, Release 0.33.49

clear_stack()
Remove all entries from the stack and resets this light to ’off’.

fade_task(dt)
Update the brightness depending on the time for a fade.

Parameters dt – time since last call

get_brightness()
Return an RGBColor() instance of the ’color’ setting of the highest color setting in the stack.

This is usually the same color as the physical LED, but not always (since physical LEDs are updated once
per frame, this value could vary.

Also note the color returned is the "raw" color that does has not had the color correction profile applied.

classmethod mode_stop(mode: mpf.core.mode.Mode)
Remove all mode entries from stack.

Parameters mode – Mode which was removed

off(fade_ms=0, priority=0, key=None, mode=None, **kwargs)
Turn this light off.

Parameters

• fade_ms – Int of the number of ms you want this light to fade to the brightness in. A
value of 0 means it’s instant. A value of None (the default) means that it will use this
lights’s and/or the machine’s default fade_ms setting.

• priority – Int value of the priority of these incoming settings. If this light has current
settings in the stack at a higher priority, the settings you’re adding here won’t take effect.
However they’re still added to the stack, so if the higher priority settings are removed, then
the next-highest apply.

• key – An arbitrary identifier (can be any immutable object) that’s used to identify these
settings for later removal. If any settings in the stack already have this key, those settings
will be replaced with these new settings.

• mode – Optional mode instance of the mode that is setting this brightness. When a mode
ends, entries from the stack with that mode will automatically be removed.

• **kwargs – Not used. Only included so this method can be used as an event callback
since events could pass random kwargs.

on(brightness=255, fade_ms=None, priority=0, key=None, mode=None, **kwargs)
Turn light on.

Add or updates a brightness entry in this lights’s stack, which is how you tell this light how bright you
want it to be.

Parameters

• brightness – How bright this light should be, as an int between 0 and 255. 0 is off. 255
is full on. Note that matrix lights in older (even WPC) machines had slow matrix update
speeds, and effective brightness levels will be far less than 255.

• fade_ms – Int of the number of ms you want this light to fade to the brightness in. A
value of 0 means it’s instant. A value of None (the default) means that it will use this
lights’s and/or the machine’s default fade_ms setting.

• priority – Int value of the priority of these incoming settings. If this light has current
settings in the stack at a higher priority, the settings you’re adding here won’t take effect.

70 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.33.49

However they’re still added to the stack, so if the higher priority settings are removed, then
the next-highest apply.

• key – An arbitrary identifier (can be any immutable object) that’s used to identify these
settings for later removal. If any settings in the stack already have this key, those settings
will be replaced with these new settings.

• mode – Optional mode instance of the mode that is setting this brightness. When a mode
ends, entries from the stack with that mode will automatically be removed.

• **kwargs – Not used. Only included so this method can be used as an event callback
since events could pass random kwargs.

remove_from_stack_by_key(key)
Remove a group of brightness settings from the stack.

Parameters key – The key of the settings to remove (based on the ’key’ parameter that was
originally passed to the brightness() method.)

This method triggers a light update, so if the highest priority settings were removed, the light will be
updated with whatever’s below it. If no settings remain after these are removed, the light will turn off.

remove_from_stack_by_mode(mode: mpf.core.mode.Mode)
Remove a group of brightness settings from the stack.

Parameters mode – Mode which was removed

This method triggers a light update, so if the highest priority settings were removed, the light will be
updated with whatever’s below it. If no settings remain after these are removed, the light will turn off.

remove_handler(callback=None)
Remove a handler from the list of registered handlers.

Parameters callback – Monitor callback to remove

stack = None
A list of dicts which represents different commands that have come in to set this light to a certain brightness
(and/or fade). Each entry in the list contains the following key/value pairs:

priority: The relative priority of this brightness command. Higher numbers take precedent, and the
highest priority entry will be the command that’s currently active. In the event of a tie, whichever
entry was added last wins (based on ’start_time’ below).

start_time: The clock time when this command was added. Primarily used to calculate fades, but
also used as a tie-breaker for multiple entries with the same priority.

start_brightness: Brightness this light when this command came in. dest_time: Clock time that represents
when a fade (from

start_brightness to dest_brightness) will be done. If this is 0, that means there is no fade. When
a fade is complete, this value is

reset to 0.

dest_brightness: Brightness of the destination this light is fading to. If a command comes in with no
fade, then this will be the same as the ’brightness’ below.

brightness: The current brightness of the light based on this command. (0-255) This value is up-
dated automatically as fades progress, and it’s the value that’s actually written to the hardware.

key: An arbitrary unique identifier to keep multiple entries in the stack separate. If a new brightness
command comes in with a key that already exists for an entry in the stack, that entry will be replaced

7.3. API Reference 71

MPF Documentation Developer Documentation, Release 0.33.49

by the new entry. The key is also used to remove entries from the stack (e.g. when shows or modes
end and they want to remove their commands from the light).

mode: Optional mode where the brightness was set. Used to remove entries when a mode ends.

update_hw_light()
Set brightness to hardware platform.

Physically updates the light hardware object based on the ’brightness’ setting of the highest priority setting
from the stack.

This method is automatically called whenever a brightness change has been made (including when fades
are active).

classmethod update_matrix_lights(dt)
Write changed lights to hardware.

Parameters dt – time since last call

self.machine.magnets.*

class mpf.devices.magnet.Magnet(self_inner, *args, **kwargs)
Bases: mpf.core.system_wide_device.SystemWideDevice

Controls a playfield magnet in a pinball machine.

Accessing magnets in code

The device collection which contains the magnets in your machine is available via self.machine.
magnets. For example, to access one called "foo", you would use self.machine.magnets.foo. You
can also access magnets in dictionary form, e.g. self.machine.magnets['foo'].

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

Methods & Attributes

Magnets have the following methods & attributes available. Note that methods & attributes inherited from base
classes are not included here.

disable(**kwargs)
Disable magnet.

enable(**kwargs)
Enable magnet.

fling_ball(**kwargs)
Fling the grabbed ball.

grab_ball(**kwargs)
Grab a ball.

release_ball(**kwargs)
Release the grabbed ball.

reset(**kwargs)
Release ball and disable magnet.

72 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.33.49

self.machine.motors.*

class mpf.devices.motor.Motor(machine: mpf.core.machine.MachineController, name: str)
Bases: mpf.core.system_wide_device.SystemWideDevice

A motor which can be controlled using drivers.

Accessing motors in code

The device collection which contains the motors in your machine is available via self.machine.motors.
For example, to access one called "foo", you would use self.machine.motors.foo. You can also access
motors in dictionary form, e.g. self.machine.motors['foo'].

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

Methods & Attributes

Motors have the following methods & attributes available. Note that methods & attributes inherited from base
classes are not included here.

go_to_position(position, **kwargs)
Move motor to a specific position.

reset(**kwargs)
Go to reset position.

self.machine.multiball_locks.*

class mpf.devices.multiball_lock.MultiballLock(self_inner, *args, **kwargs)
Bases: mpf.core.mode_device.ModeDevice

Ball lock device which locks balls for a multiball.

Accessing multiball_locks in code

The device collection which contains the multiball_locks in your machine is available via self.machine.
multiball_locks. For example, to access one called "foo", you would use self.machine.
multiball_locks.foo. You can also access multiball_locks in dictionary form, e.g. self.machine.
multiball_locks['foo'].

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

Methods & Attributes

Multiball_locks have the following methods & attributes available. Note that methods & attributes inherited
from base classes are not included here.

disable(**kwargs)
Disable the lock.

If the lock is not enabled, no balls will be locked.

Parameters **kwargs – unused

7.3. API Reference 73

MPF Documentation Developer Documentation, Release 0.33.49

enable(**kwargs)
Enable the lock.

If the lock is not enabled, no balls will be locked.

Parameters **kwargs – unused

is_virtually_full
Return true if lock is full.

locked_balls
Return the number of locked balls for the current player.

remaining_virtual_space_in_lock
Return the remaining capacity of the lock.

reset_all_counts(**kwargs)
Reset the locked balls for all players.

reset_count_for_current_player(**kwargs)
Reset the locked balls for the current player.

self.machine.multiballs.*

class mpf.devices.multiball.Multiball(self_inner, *args, **kwargs)
Bases: mpf.core.system_wide_device.SystemWideDevice, mpf.core.mode_device.
ModeDevice

Multiball device for MPF.

Accessing multiballs in code

The device collection which contains the multiballs in your machine is available via self.machine.
multiballs. For example, to access one called "foo", you would use self.machine.multiballs.
foo. You can also access multiballs in dictionary form, e.g. self.machine.multiballs['foo'].

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

Methods & Attributes

Multiballs have the following methods & attributes available. Note that methods & attributes inherited from
base classes are not included here.

add_a_ball(**kwargs)
Add a ball if multiball has started.

disable(**kwargs)
Disable the multiball.

If the multiball is not enabled, it cannot start. Will not stop a running multiball.

Parameters **kwargs – unused

enable(**kwargs)
Enable the multiball.

If the multiball is not enabled, it cannot start.

Parameters **kwargs – unused

74 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.33.49

reset(**kwargs)
Reset the multiball and disable it.

Parameters **kwargs – unused

start(**kwargs)
Start multiball.

start_or_add_a_ball(**kwargs)
Start multiball or add a ball if multiball has started.

stop(**kwargs)
Stop shoot again.

self.machine.physical_dmds.*

class mpf.devices.physical_dmd.PhysicalDmd(machine, name)
Bases: mpf.core.system_wide_device.SystemWideDevice

A physical DMD.

Accessing physical_dmds in code

The device collection which contains the physical_dmds in your machine is available via self.
machine.physical_dmds. For example, to access one called "foo", you would use self.machine.
physical_dmds.foo. You can also access physical_dmds in dictionary form, e.g. self.machine.
physical_dmds['foo'].

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

Methods & Attributes

Physical_dmds have the following methods & attributes available. Note that methods & attributes inherited from
base classes are not included here.

update(data: bytes)
Update data on the dmd.

Parameters data – bytes to send

self.machine.physical_rgb_dmds.*

class mpf.devices.physical_rgb_dmd.PhysicalRgbDmd(machine, name)
Bases: mpf.core.system_wide_device.SystemWideDevice

A physical DMD.

Accessing physical_rgb_dmds in code

The device collection which contains the physical_rgb_dmds in your machine is available via self.
machine.physical_rgb_dmds. For example, to access one called "foo", you would use self.
machine.physical_rgb_dmds.foo. You can also access physical_rgb_dmds in dictionary form, e.g.
self.machine.physical_rgb_dmds['foo'].

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

7.3. API Reference 75

MPF Documentation Developer Documentation, Release 0.33.49

Methods & Attributes

Physical_rgb_dmds have the following methods & attributes available. Note that methods & attributes inherited
from base classes are not included here.

update(data: bytes)
Update data on the dmd.

Parameters data – bytes to send

self.machine.playfield_transfers.*

class mpf.devices.playfield_transfer.PlayfieldTransfer(machine, name)
Bases: mpf.core.system_wide_device.SystemWideDevice

Device which move a ball from one playfield to another.

Accessing playfield_transfers in code

The device collection which contains the playfield_transfers in your machine is available via self.machine.
playfield_transfers. For example, to access one called "foo", you would use self.machine.
playfield_transfers.foo. You can also access playfield_transfers in dictionary form, e.g. self.
machine.playfield_transfers['foo'].

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

Methods & Attributes

Playfield_transfers have the following methods & attributes available. Note that methods & attributes inherited
from base classes are not included here.

transfer(**kwargs)
Transfer a ball to the target playfield.

self.machine.playfields.*

class mpf.devices.playfield.Playfield(self_inner, *args, **kwargs)
Bases: mpf.core.system_wide_device.SystemWideDevice

One playfield in a pinball machine.

Accessing playfields in code

The device collection which contains the playfields in your machine is available via self.machine.
playfields. For example, to access one called "foo", you would use self.machine.playfields.
foo. You can also access playfields in dictionary form, e.g. self.machine.playfields['foo'].

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

76 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.33.49

Methods & Attributes

Playfields have the following methods & attributes available. Note that methods & attributes inherited from base
classes are not included here.

add_ball(balls=1, source_device=None, player_controlled=False)
Add live ball(s) to the playfield.

Parameters

• balls – Integer of the number of balls you’d like to add.

• source_device – Optional ball device object you’d like to add the ball(s) from.

• player_controlled – Boolean which specifies whether this event is player con-
trolled. (See not below for details)

Returns True if it’s able to process the add_ball() request, False if it cannot.

The source_device arg is included to give you an options for specifying the source of the ball(s) to be
added. This argument is optional, so if you don’t supply them then MPF will look for a device tagged with
’ball_add_live’. If you don’t provide a source and you don’t have a device with the ’ball_add_live’ tag,
MPF will quit.

This method does not increase the game controller’s count of the number of balls in play. So if you want to
add balls (like in a multiball scenario), you need to call this method along with self.machine.game.
add_balls_in_play().)

MPF tracks the number of balls in play separately from the actual balls on the playfield because there are
numerous situations where the two counts are not the same. For example, if a ball is in a VUK while some
animation is playing, there are no balls on the playfield but still one ball in play, or if the player has a
two-ball multiball and they shoot them both into locks, there are still two balls in play even though there
are no balls on the playfield. The opposite can also be true, like when the player tilts then there are still
balls on the playfield but no balls in play.

Explanation of the player_controlled parameter:

Set player_controlled to True to indicate that MPF should wait for the player to eject the ball from the
source_device rather than firing a coil. The logic works like this:

If the source_device does not have an eject_coil defined, then it’s assumed that player_controlled is the
only option. (e.g. this is a traditional plunger.) If the source_device does have an eject_coil defined, then
there are two ways the eject could work. (1) there could be a "launch" button of some kind that’s used
to fire the eject coil, or (2) the device could be the auto/manual combo style where there’s a mechanical
plunger but also a coil which can eject the ball.

If player_controlled is true and the device has an eject_coil, MPF will look for the
player_controlled_eject_tag and eject the ball when a switch with that tag is activated.

If there is no player_controlled_eject_tag, MPF assumes it’s a manual plunger and will wait for the ball to
disappear from the device based on the device’s ball count decreasing.

add_incoming_ball(incoming_ball: mpf.devices.ball_device.incoming_balls_handler.IncomingBall)
Track an incoming ball.

add_missing_balls(balls)
Notify the playfield that it probably received a ball which went missing elsewhere.

ball_arrived()
Confirm first ball in queue.

7.3. API Reference 77

MPF Documentation Developer Documentation, Release 0.33.49

ball_search_block(**kwargs)
Block ball search for this playfield.

Blocking will disable ball search if it’s enabled or running, and will prevent ball search from enabling if
it’s disabled until ball_search_resume() is called.

ball_search_disable(**kwargs)
Disable ball search for this playfield.

If the ball search timer is running, it will stop and disable it. If an actual ball search process is running, it
will stop.

ball_search_enable(**kwargs)
Enable ball search for this playfield.

Note this does not start the ball search process, rather, it starts the timer running.

ball_search_unblock(**kwargs)
Unblock ball search for this playfield.

This will check to see if there are balls on the playfield, and if so, enable ball search.

balls
The number of balls on the playfield.

expected_ball_received()
Handle an expected ball.

classmethod get_additional_ball_capacity()
The number of ball which can be added.

Used to find out how many more balls this device can hold. Since this is the playfield device, this method
always returns 999.

Returns: 999

classmethod is_playfield()
True since it is a playfield.

mark_playfield_active_from_device_action()
Mark playfield active because a device on the playfield detected activity.

remove_incoming_ball(incoming_ball: mpf.devices.ball_device.incoming_balls_handler.IncomingBall)
Stop tracking an incoming ball.

unexpected_ball_received()
Handle an unexpected ball.

static wait_for_ready_to_receive(source)
Playfield is always ready to receive.

self.machine.score_reel_groups.*

class mpf.devices.score_reel_group.ScoreReelGroup(machine, name)
Bases: mpf.core.system_wide_device.SystemWideDevice

Represents a logical grouping of score reels in a pinball machine.

Multiple individual ScoreReel object make up the individual digits of this group. This group also has support
for the blank zero "inserts" that some machines use. This is a subclass of mpf.core.device.Device.

78 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.33.49

Accessing score_reel_groups in code

The device collection which contains the score_reel_groups in your machine is available via self.machine.
score_reel_groups. For example, to access one called "foo", you would use self.machine.
score_reel_groups.foo. You can also access score_reel_groups in dictionary form, e.g. self.
machine.score_reel_groups['foo'].

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

Methods & Attributes

Score_reel_groups have the following methods & attributes available. Note that methods & attributes inherited
from base classes are not included here.

add_value(value, jump=False, target=None)
Add value to a ScoreReelGroup.

You can also pass a negative value to subtract points.

You can control the logistics of how these pulses are applied via the jump parameter. If jump is False
(default), then this method will respect the proper "sequencing" of reel advances. For example, if the
current value is 1700 and the new value is 2200, this method will fire the hundreds reel twice (to go to
1800 then 1900), then on the third pulse it will fire the thousands and hundreds (to go to 2000), then do the
final two pulses to land at 2200.

Parameters

• value – The integer value you’d like to add to (or subtract from) the current value

• jump – Optional boolean value which controls whether the reels should "count up" to the
new value in the classic EM way (jump=False) or whether they should just jump there as
fast as they can (jump=True). Default is False.

• target – Optional integer that’s the target for where this reel group should end up after
it’s done advancing. If this is not specified then the target value will be calculated based
on the current reel positions, though sometimes this get’s wonky if the reel is jumping or
moving, so it’s best to specify the target if you can.

assumed_value_int
Return integer representation of the value we assume is shown on this ScoreReelGroup.

A value of -999 means the value is unknown.

assumed_value_list
Return list that holds the values of the reels in the group.

classmethod chime(chime, **kwargs)
Pulse chime.

get_physical_value_list()
Query all the reels in the group and builds a list of their actual current physical state.

This is either the value of the current switch or -999 if no switch is active. This method also updates each
reel’s physical value.

Returns: List of physical reel values.

initialize(**kwargs)
Initialize the score reels by reading their current physical values and setting each reel’s rollover reel.

This is a separate method since it can’t run int __iniit__() because all the other reels have to be setup first.

7.3. API Reference 79

MPF Documentation Developer Documentation, Release 0.33.49

int_to_reel_list(value)
Convert an integer to a list of integers that represent each positional digit in this ScoreReelGroup.

The list returned is in reverse order. (See the example below.)

The list returned is customized for this ScoreReelGroup both in terms of number of elements and values
of None used to represent blank plastic zero inserts that are not controlled by a score reel unit.

For example, if you have a 5-digit score reel group that has 4 phyiscial reels in the tens through ten-
thousands position and a fake plastic "0" insert for the ones position, if you pass this method a value of
12300, it will return [None, 0, 3, 2, 1]

This method will pad shorter ints with zeros, and it will chop off leading digits for ints that are too long.
(For example, if you pass a value of 10000 to a ScoreReelGroup which only has 4 digits, the returns list
would correspond to 0000, since your score reel unit has rolled over.)

Parameters value – The interger value you’d like to convert.

Returns A list containing the values for each corresponding score reel, with the lowest reel digit
position in list position 0.

is_desired_valid(notify_event=False)
Test to see whether the machine thinks the ScoreReelGroup is currently showing the desired value.

In other words, is the ScoreReelGroup "done" moving? Note this ignores placeholder non-controllable
digits.

Returns: True or False

light(relight_on_valid=False, **kwargs)
Light up this ScoreReelGroup based on the ’light_tag’ in its config.

classmethod reel_list_to_int(reel_list)
Convert an list of integers to a single integer.

This method is like int_to_reel_list except that it works in the opposite direction.

The list inputted is expected to be in "reverse" order, with the ones digit in the [0] index position. Values of
None are converted to zeros. For example, if you pass [None, 0, 3, 2, 1], this method will return an integer
value of 12300.

Note this method does not take into consideration how many reel positions are in this ScoreReelGroup. It
just converts whatever you pass it.

Parameters reel_list – The list containing the values for each score reel position.

Returns The resultant integer based on the list passed.

set_rollover_reels()
Call each reel’s set_rollover_reel method and passes it a pointer to the next higher up reel.

This is how we know whether we’re able to advance the next higher up reel when a particular reel rolls
over during a step advance.

set_value(value=None, value_list=None)
Reset the score reel group to display the value passed.

This method will "jump" the score reel group to display the value that’s passed as an it. (Note this "jump"
technique means it will just move the reels as fast as it can, and nonsensical values might show up on the
reel while the movement is in progress.)

This method is used to "reset" a reel group to all zeros at the beginning of a game, and can also be used to
reset a reel group that is confused or to switch a reel to the new player’s score if multiple players a sharing
the same reel group.

80 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.33.49

Note you can choose to pass either an integer representation of the value, or a value list.

Parameters

• value – An integer value of what the new displayed value (i.e. score) should be. This is
the default option if you only pass a single positional argument, e.g. set_value(2100).

• value_list – A list of the value you’d like the reel group to display.

tick(dt)
Automatically called once per machine tick and checks to see if there are any jumps or advances in
progress.

If so, calls those methods.

unlight(relight_on_valid=False, **kwargs)
Turn off the lights for this ScoreReelGroup based on the ’light_tag’ in its config.

validate(value=None)
Validate that this score reel group is in the position the machine wants it to be in.

If lazy or strict confirm is enabled, this method will also make sure the reels are in their proper physical
positions.

Parameters value (ignored) – This method takes an argument of value, but it’s not used.
It’s only there because when reels post their events after they’re done moving, they include
a parameter of value which is the position they’re in. So we just need to have this argument
listed so we can use this method as an event handler for those events.

self.machine.score_reels.*

class mpf.devices.score_reel.ScoreReel(machine, name)
Bases: mpf.core.system_wide_device.SystemWideDevice

Represents an individual electro-mechanical score reel in a pinball machine.

Multiples reels of this class can be grouped together into ScoreReelGroups which collectively make up a display
like "Player 1 Score" or "Player 2 card value", etc.

This device class is used for all types of mechanical number reels in a machine, including reels that have more
than ten numbers and that can move in multiple directions (such as the credit reel).

Accessing score_reels in code

The device collection which contains the score_reels in your machine is available via self.machine.
score_reels. For example, to access one called "foo", you would use self.machine.score_reels.
foo. You can also access score_reels in dictionary form, e.g. self.machine.score_reels['foo'].

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

Methods & Attributes

Score_reels have the following methods & attributes available. Note that methods & attributes inherited from
base classes are not included here.

advance()
Perform the coil firing to advance this reel one position (up or down).

This method also schedules delays to post the following events:

7.3. API Reference 81

MPF Documentation Developer Documentation, Release 0.33.49

reel_<name>_ready: When the config[’repeat_pulse_time’] time is up reel_<name>_hw_value: When
the config[’hw_confirm_time’] time is up

Args:

Returns: If this method is unable to advance the reel (either because it’s not ready, because it’s at its
maximum value and does not have rollover capabilities, or because you’re trying to advance it in a
direction but it doesn’t have a coil for that direction), it will return False. If it’s able to pulse the
advance coil, it returns True.

check_hw_switches(no_event=False)
Check all the value switches for this score reel.

This check only happens if self.ready is True. If the reel is not ready, it means another advance request has
come in after the initial one. In that case then the subsequent advance will call this method again when
after that advance is done.

If this method finds an active switch, it sets self.physical_value to that. Otherwise it sets it to -999. It will
also update self.assumed_value if it finds an active switch. Otherwise it leaves that value unchanged.

This method is automatically called (via a delay) after the reel advances. The delay is based on the config
value self.config[’hw_confirm_time’].

TODO: What happens if there are multiple active switches? Currently it will return the highest one. Is that
ok?

Parameters no_event – A boolean switch that allows you to suppress the event posting from
this call if you just want to update the values.

Returns: The hardware value of the switch, either the position or -999. If the reel is not ready, it re-
turns False.

set_destination_value()
Return the integer value of the destination this reel is moving to.

Args:

Returns: The value of the destination. If the current self.assumed_value is -999, this method will al-
ways return -999 since it doesn’t know where the reel is and therefore doesn’t know what the destina-
tion value would be.

set_rollover_reel(reel)
Set this reels’ rollover_reel to the object of the next higher reel.

self.machine.servos.*

class mpf.devices.servo.Servo(self_inner, *args, **kwargs)
Bases: mpf.core.system_wide_device.SystemWideDevice

Represents a servo in a pinball machine.

Args: Same as the Device parent class.

Accessing servos in code

The device collection which contains the servos in your machine is available via self.machine.servos.
For example, to access one called "foo", you would use self.machine.servos.foo. You can also access
servos in dictionary form, e.g. self.machine.servos['foo'].

82 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.33.49

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

Methods & Attributes

Servos have the following methods & attributes available. Note that methods & attributes inherited from base
classes are not included here.

go_to_position(position)
Move servo to position.

reset(**kwargs)
Go to reset position.

self.machine.shot_groups.*

class mpf.devices.shot_group.ShotGroup(machine, name)
Bases: mpf.core.mode_device.ModeDevice, mpf.core.system_wide_device.
SystemWideDevice

Represents a group of shots in a pinball machine by grouping together multiple Shot class devices.

This is used so you get get "group-level" functionality, like shot rotation, shot group completion, etc. This would
be used for a group of rollover lanes, a bank of standups, etc.

Accessing shot_groups in code

The device collection which contains the shot_groups in your machine is available via self.machine.
shot_groups. For example, to access one called "foo", you would use self.machine.shot_groups.
foo. You can also access shot_groups in dictionary form, e.g. self.machine.shot_groups['foo'].

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

Methods & Attributes

Shot_groups have the following methods & attributes available. Note that methods & attributes inherited from
base classes are not included here.

advance(steps=1, mode=None, force=False, **kwargs)
Advance the current active profile from every shot in the group one step forward.

check_for_complete(mode)
Check all the shots in this shot group.

If they are all in the same state, then a complete event is posted.

disable(mode=None, **kwargs)
Disable this shot group.

Also disables all the shots in this group.

disable_rotation(**kwargs)
Disable shot rotation.

If disabled, rotation events do not actually rotate the shots.

7.3. API Reference 83

MPF Documentation Developer Documentation, Release 0.33.49

enable(mode=None, profile=None, **kwargs)
Enable this shot group.

Also enables all the shots in this group.

enable_rotation(**kwargs)
Enable shot rotation.

If disabled, rotation events do not actually rotate the shots.

enabled
Return true if enabled.

hit(mode, profile, state, **kwargs)
One of the member shots in this shot group was hit.

Parameters

• profile – String name of the active profile of the shot that was hit.

• mode – unused

• kwargs – unused

remove_active_profile(mode, **kwargs)
Remove the current active profile from every shot in the group.

reset(mode=None, **kwargs)
Reset each of the shots in this group back to the initial state in whatever shot profile they have applied.

This is the same as calling each shot’s reset() method one-by-one.

rotate(direction=None, states=None, exclude_states=None, mode=None, **kwargs)
Rotate (or "shift") the state of all the shots in this group.

This is used for things like lane change, where hitting the flipper button shifts all the states of the shots in
the group to the left or right.

This method actually transfers the current state of each shot profile to the left or the right, and the shot on
the end rolls over to the taret on the other end.

Parameters

• direction – String that specifies whether the rotation direction is to the left or right.
Values are ’right’ or ’left’. Default of None will cause the shot group to rotate in the
direction as specified by the rotation_pattern.

• states – A string of a state or a list of strings that represent the targets that will be
selected to rotate. If None (default), then all targets will be included.

• exclude_states – A string of a state or a list of strings that controls whether any
targets will not be rotated. (Any targets with an active profile in one of these states will
not be included in the rotation. Default is None which means all targets will be rotated)

• kwargs – unused

Note that this shot group must, and rotation_events for this shot group, must both be enabled for the
rotation events to work.

rotate_left(mode=None, **kwargs)
Rotate the state of the shots to the left.

This method is the same as calling rotate(’left’)

Parameters kwargs – unused

84 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.33.49

rotate_right(mode=None, **kwargs)
Rotate the state of the shots to the right.

This method is the same as calling rotate(’right’)

Parameters kwargs – unused

self.machine.shots.*

class mpf.devices.shot.Shot(machine, name)
Bases: mpf.core.mode_device.ModeDevice, mpf.core.system_wide_device.
SystemWideDevice

A device which represents a generic shot.

Accessing shots in code

The device collection which contains the shots in your machine is available via self.machine.shots. For
example, to access one called "foo", you would use self.machine.shots.foo. You can also access shots
in dictionary form, e.g. self.machine.shots['foo'].

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

Methods & Attributes

Shots have the following methods & attributes available. Note that methods & attributes inherited from base
classes are not included here.

active_sequences = None
List of tuples – (id, current_position_index, next_switch)

add_profile(profile_dict)
Add a profile to shot.

advance(steps=1, mode=None, force=False, **kwargs)
Advance a shot profile forward.

If this profile is at the last step and configured to loop, it will roll over to the first step. If this profile is at
the last step and not configured to loop, this method has no effect.

deregister_group(group)
Deregister a group.

Notify this shot that it is no longer part of this group. Note this is called by :class:ShotGroup. If you
want to manually remove a shot from a group, do it from there.

disable(mode=None, **kwargs)
Disable this shot.

If the shot is not enabled, hits to it will not be processed.

enable(mode=None, profile=None, **kwargs)
Enable shot.

enabled
Return true if enabled.

get_profile_by_key(key, value)
Return profile for a key value pair.

7.3. API Reference 85

MPF Documentation Developer Documentation, Release 0.33.49

hit(mode=’default#$%’, _wf=None, **kwargs)
Advance the currently-active shot profile.

Parameters

• mode – (Optional) The mode instance that was hit. If this is not specified, this hit is reg-
istered via the highest-priority mode that this shot is active it. A value of None represents
the base machine config (e.g. no Mode). The crazy default string it so this method can
differentiate between no mode specified (where it uses the highest one) and a value of
"None" which is the base machine-wide config.

• _wf – (Internal use only) A list of remaining modes from the enable table of the original
hit. Used to waterfall hits (which is where hits are cascaded down to this shot in lower
priority modes if blocking is not set.

Note that the shot must be enabled in order for this hit to be processed.

jump(mode, state, show_step=1, force=True)
Jump to a certain state in the active shot profile.

Parameters

• state – int of the state number you want to jump to. Note that states are zero-based, so
the first state is 0.

• show_step – The step number that the associated light script should start playing at.
Useful with rotations so this shot can pick up right where it left off. Default is 1 (the first
step in the show)

monitor_enabled = False
Class attribute which specifies whether any monitors have been registered to track shots.

player_turn_start(player, **kwargs)
Update the player reference to the current player and to apply the default machine-wide shot profile.

Called by the shot profile manager when a player’s turn starts.

player_turn_stop()
Remove the profiles from the shot and remove the player reference.

Called by the shot profile manager when the player’s turn ends.

register_group(group)
Register a group.

Notify this shot that it has been added to a group, meaning it will update this group of its state changes.
Note this is called by :class:ShotGroup. If you want to manually add a shot to a group, do it from there.

remove_active_profile(mode=’default#$%’, **kwargs)
Remove the active profile.

remove_profile_by_mode(mode)
Remove profile for mode.

reset(mode=None, **kwargs)
Reset the shot profile for the passed mode back to the first state (State 0) and reset all sequences.

update_current_state_name(mode)
Update current state name.

update_profile(profile=None, enable=None, mode=None)
Update profile.

86 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.33.49

self.machine.switches.*

class mpf.devices.switch.Switch(self_inner, *args, **kwargs)
Bases: mpf.core.system_wide_device.SystemWideDevice

A switch in a pinball machine.

Accessing switches in code

The device collection which contains the switches in your machine is available via self.machine.
switches. For example, to access one called "foo", you would use self.machine.switches.foo.
You can also access switches in dictionary form, e.g. self.machine.switches['foo'].

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

Methods & Attributes

Switches have the following methods & attributes available. Note that methods & attributes inherited from base
classes are not included here.

add_handler(callback, state=1, ms=0, return_info=False, callback_kwargs=None)
Add switch handler for this switch.

get_configured_switch()
Reconfigure switch.

hw_state = None
The physical hardware state of the switch. 1 = active, 0 = inactive. This is what the actual hardware is
reporting and does not consider whether a switch is NC or NO.

remove_handler(callback, state=1, ms=0)
Remove switch handler for this switch.

state = None
The logical state of a switch. 1 = active, 0 = inactive. This takes into consideration the NC or NO settings
for the switch.

self.machine.timed_switches.*

class mpf.devices.timed_switch.TimedSwitch(self_inner, *args, **kwargs)
Bases: mpf.core.system_wide_device.SystemWideDevice, mpf.core.mode_device.
ModeDevice

Timed Switch device.

Accessing timed_switches in code

The device collection which contains the timed_switches in your machine is available via self.machine.
timed_switches. For example, to access one called "foo", you would use self.machine.
timed_switches.foo. You can also access timed_switches in dictionary form, e.g. self.machine.
timed_switches['foo'].

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

7.3. API Reference 87

MPF Documentation Developer Documentation, Release 0.33.49

Methods & Attributes

Timed_switches have the following methods & attributes available. Note that methods & attributes inherited
from base classes are not included here.

7.3.3 Modes

Covers all the "built-in" modes. They’re accessible via self.machine.modes.*name*, for example, self.
machine.modes.game or self.machine.modes.base.

self.machine.modes.attract

class mpf.modes.attract.code.attract.Attract(machine, config, name, path)
Bases: mpf.core.mode.Mode

Default mode running in a machine when a game is not in progress.

Its main job is to watch for the start button to be pressed, to post the requests to start games, and to move the
machine flow to the next mode if the request to start game comes back as approved.

Accessing the attract mode via code

You can access the attract mode from anywhere via self.machine.modes.attract.

Methods & Attributes

The attract mode has the following methods & attributes available. Note that methods & attributes inherited
from the base Mode class are not included here.

active
Return true if mode is active.

add_mode_event_handler(event, handler, priority=0, **kwargs)
Register an event handler which is automatically removed when this mode stops.

This method is similar to the Event Manager’s add_handler() method, except this method automatically
unregisters the handlers when the mode ends.

Parameters

• event – String name of the event you’re adding a handler for. Since events are text
strings, they don’t have to be pre-defined.

• handler – The method that will be called when the event is fired.

• priority – An arbitrary integer value that defines what order the handlers will be called
in. The default is 1, so if you have a handler that you want to be called first, add it here
with a priority of 2. (Or 3 or 10 or 100000.) The numbers don’t matter. They’re called
from highest to lowest. (i.e. priority 100 is called before priority 1.)

• **kwargs – Any any additional keyword/argument pairs entered here will be attached
to the handler and called whenever that handler is called. Note these are in addition to
kwargs that could be passed as part of the event post. If there’s a conflict, the event-level
ones will win.

88 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.33.49

Returns A GUID reference to the handler which you can use to later remove the handler via
remove_handler_by_key. Though you don’t need to remove the handler since the
whole point of this method is they’re automatically removed when the mode stops.

Note that if you do add a handler via this method and then remove it manually, that’s ok too.

configure_logging(logger, console_level=’basic’, file_level=’basic’)
Configure the logging for the module this class is mixed into.

Parameters

• logger – The string name of the logger to use

• console_level – The level of logging for the console. Valid options are "none", "ba-
sic", or "full".

• file_level – The level of logging for the console. Valid options are "none", "basic",
or "full".

debug_log(msg, *args, **kwargs)
Log a message at the debug level.

Note that whether this message shows up in the console or log file is controlled by the settings used with
configure_logging().

error_log(msg, *args, **kwargs)
Log a message at the error level.

These messages will always be shown in the console and the log file.

info_log(msg, *args, **kwargs)
Log a message at the info level.

Whether this message shows up in the console or log file is controlled by the settings used with config-
ure_logging().

result_of_start_request(ev_result=True)
Called after the request_to_start_game event is posted.

If result is True, this method posts the event game_start. If False, nothing happens, as the game start
request was denied by some handler.

Parameters ev_result – Bool result of the boolean event request_to_start_game. If any
registered event handler did not want the game to start, this will be False. Otherwise it’s
True.

start(mode_priority=None, callback=None, **kwargs)
Start this mode.

Parameters

• mode_priority – Integer value of what you want this mode to run at. If you don’t
specify one, it will use the "Mode: priority" setting from this mode’s configuration file.

• **kwargs – Catch-all since this mode might start from events with who-knows-what
keyword arguments.

Warning: You can safely call this method, but do not override it in your mode code. If you want to write
your own mode code by subclassing Mode, put whatever code you want to run when this mode starts in
the mode_start method which will be called automatically.

start_button_pressed()
Called when the a switch tagged with start is activated.

7.3. API Reference 89

MPF Documentation Developer Documentation, Release 0.33.49

start_button_released()
Called when the a switch tagged with start is deactivated.

Since this is the Attract mode, this method posts a boolean event called request_to_start_game. If that
event comes back True, this method calls result_of_start_request().

stop(callback=None, **kwargs)
Stop this mode.

Parameters **kwargs – Catch-all since this mode might start from events with who-knows-
what keyword arguments.

Warning: You can safely call this method, but do not override it in your mode code. If you want to write
your own mode code by subclassing Mode, put whatever code you want to run when this mode stops in
the mode_stop method which will be called automatically.

warning_log(msg, *args, **kwargs)
Log a message at the warning level.

These messages will always be shown in the console and the log file.

self.machine.modes.bonus

class mpf.modes.bonus.code.bonus.Bonus(machine, config, name, path)
Bases: mpf.core.mode.Mode

Bonus mode for MPF.

Give a player bonus for their achievements. But only if the machine is not tilted.

Accessing the bonus mode via code

You can access the bonus mode from anywhere via self.machine.modes.bonus.

Methods & Attributes

The bonus mode has the following methods & attributes available. Note that methods & attributes inherited
from the base Mode class are not included here.

active
Return true if mode is active.

add_mode_event_handler(event, handler, priority=0, **kwargs)
Register an event handler which is automatically removed when this mode stops.

This method is similar to the Event Manager’s add_handler() method, except this method automatically
unregisters the handlers when the mode ends.

Parameters

• event – String name of the event you’re adding a handler for. Since events are text
strings, they don’t have to be pre-defined.

• handler – The method that will be called when the event is fired.

• priority – An arbitrary integer value that defines what order the handlers will be called
in. The default is 1, so if you have a handler that you want to be called first, add it here
with a priority of 2. (Or 3 or 10 or 100000.) The numbers don’t matter. They’re called
from highest to lowest. (i.e. priority 100 is called before priority 1.)

90 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.33.49

• **kwargs – Any any additional keyword/argument pairs entered here will be attached
to the handler and called whenever that handler is called. Note these are in addition to
kwargs that could be passed as part of the event post. If there’s a conflict, the event-level
ones will win.

Returns A GUID reference to the handler which you can use to later remove the handler via
remove_handler_by_key. Though you don’t need to remove the handler since the
whole point of this method is they’re automatically removed when the mode stops.

Note that if you do add a handler via this method and then remove it manually, that’s ok too.

configure_logging(logger, console_level=’basic’, file_level=’basic’)
Configure the logging for the module this class is mixed into.

Parameters

• logger – The string name of the logger to use

• console_level – The level of logging for the console. Valid options are "none", "ba-
sic", or "full".

• file_level – The level of logging for the console. Valid options are "none", "basic",
or "full".

debug_log(msg, *args, **kwargs)
Log a message at the debug level.

Note that whether this message shows up in the console or log file is controlled by the settings used with
configure_logging().

error_log(msg, *args, **kwargs)
Log a message at the error level.

These messages will always be shown in the console and the log file.

hurry_up(**kwargs)
Changes the slide display delay to the "hurry up" setting.

This is typically used with a flipper cancel event to hurry up the bonus display when the player hits both
flippers.

info_log(msg, *args, **kwargs)
Log a message at the info level.

Whether this message shows up in the console or log file is controlled by the settings used with config-
ure_logging().

start(mode_priority=None, callback=None, **kwargs)
Start this mode.

Parameters

• mode_priority – Integer value of what you want this mode to run at. If you don’t
specify one, it will use the "Mode: priority" setting from this mode’s configuration file.

• **kwargs – Catch-all since this mode might start from events with who-knows-what
keyword arguments.

Warning: You can safely call this method, but do not override it in your mode code. If you want to write
your own mode code by subclassing Mode, put whatever code you want to run when this mode starts in
the mode_start method which will be called automatically.

stop(callback=None, **kwargs)
Stop this mode.

7.3. API Reference 91

MPF Documentation Developer Documentation, Release 0.33.49

Parameters **kwargs – Catch-all since this mode might start from events with who-knows-
what keyword arguments.

Warning: You can safely call this method, but do not override it in your mode code. If you want to write
your own mode code by subclassing Mode, put whatever code you want to run when this mode stops in
the mode_stop method which will be called automatically.

warning_log(msg, *args, **kwargs)
Log a message at the warning level.

These messages will always be shown in the console and the log file.

self.machine.modes.carousel

class mpf.modes.carousel.code.carousel.Carousel(machine, config, name, path)
Bases: mpf.core.mode.Mode

Mode which allows the player to select another mode to run.

Accessing the carousel mode via code

You can access the carousel mode from anywhere via self.machine.modes.carousel.

Methods & Attributes

The carousel mode has the following methods & attributes available. Note that methods & attributes inherited
from the base Mode class are not included here.

active
Return true if mode is active.

add_mode_event_handler(event, handler, priority=0, **kwargs)
Register an event handler which is automatically removed when this mode stops.

This method is similar to the Event Manager’s add_handler() method, except this method automatically
unregisters the handlers when the mode ends.

Parameters

• event – String name of the event you’re adding a handler for. Since events are text
strings, they don’t have to be pre-defined.

• handler – The method that will be called when the event is fired.

• priority – An arbitrary integer value that defines what order the handlers will be called
in. The default is 1, so if you have a handler that you want to be called first, add it here
with a priority of 2. (Or 3 or 10 or 100000.) The numbers don’t matter. They’re called
from highest to lowest. (i.e. priority 100 is called before priority 1.)

• **kwargs – Any any additional keyword/argument pairs entered here will be attached
to the handler and called whenever that handler is called. Note these are in addition to
kwargs that could be passed as part of the event post. If there’s a conflict, the event-level
ones will win.

Returns A GUID reference to the handler which you can use to later remove the handler via
remove_handler_by_key. Though you don’t need to remove the handler since the
whole point of this method is they’re automatically removed when the mode stops.

92 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.33.49

Note that if you do add a handler via this method and then remove it manually, that’s ok too.

configure_logging(logger, console_level=’basic’, file_level=’basic’)
Configure the logging for the module this class is mixed into.

Parameters

• logger – The string name of the logger to use

• console_level – The level of logging for the console. Valid options are "none", "ba-
sic", or "full".

• file_level – The level of logging for the console. Valid options are "none", "basic",
or "full".

debug_log(msg, *args, **kwargs)
Log a message at the debug level.

Note that whether this message shows up in the console or log file is controlled by the settings used with
configure_logging().

error_log(msg, *args, **kwargs)
Log a message at the error level.

These messages will always be shown in the console and the log file.

info_log(msg, *args, **kwargs)
Log a message at the info level.

Whether this message shows up in the console or log file is controlled by the settings used with config-
ure_logging().

start(mode_priority=None, callback=None, **kwargs)
Start this mode.

Parameters

• mode_priority – Integer value of what you want this mode to run at. If you don’t
specify one, it will use the "Mode: priority" setting from this mode’s configuration file.

• **kwargs – Catch-all since this mode might start from events with who-knows-what
keyword arguments.

Warning: You can safely call this method, but do not override it in your mode code. If you want to write
your own mode code by subclassing Mode, put whatever code you want to run when this mode starts in
the mode_start method which will be called automatically.

stop(callback=None, **kwargs)
Stop this mode.

Parameters **kwargs – Catch-all since this mode might start from events with who-knows-
what keyword arguments.

Warning: You can safely call this method, but do not override it in your mode code. If you want to write
your own mode code by subclassing Mode, put whatever code you want to run when this mode stops in
the mode_stop method which will be called automatically.

warning_log(msg, *args, **kwargs)
Log a message at the warning level.

These messages will always be shown in the console and the log file.

7.3. API Reference 93

MPF Documentation Developer Documentation, Release 0.33.49

self.machine.modes.credits

class mpf.modes.credits.code.credits.Credits(machine, config, name, path)
Bases: mpf.core.mode.Mode

Mode which manages the credits and prevents the game from starting without credits.

Accessing the credits mode via code

You can access the credits mode from anywhere via self.machine.modes.credits.

Methods & Attributes

The credits mode has the following methods & attributes available. Note that methods & attributes inherited
from the base Mode class are not included here.

active
Return true if mode is active.

add_credit(price_tiering=True)
Add a single credit to the machine.

Parameters price_tiering – Boolean which controls whether this credit will be eligible
for the pricing tier bonuses. Default is True.

add_mode_event_handler(event, handler, priority=0, **kwargs)
Register an event handler which is automatically removed when this mode stops.

This method is similar to the Event Manager’s add_handler() method, except this method automatically
unregisters the handlers when the mode ends.

Parameters

• event – String name of the event you’re adding a handler for. Since events are text
strings, they don’t have to be pre-defined.

• handler – The method that will be called when the event is fired.

• priority – An arbitrary integer value that defines what order the handlers will be called
in. The default is 1, so if you have a handler that you want to be called first, add it here
with a priority of 2. (Or 3 or 10 or 100000.) The numbers don’t matter. They’re called
from highest to lowest. (i.e. priority 100 is called before priority 1.)

• **kwargs – Any any additional keyword/argument pairs entered here will be attached
to the handler and called whenever that handler is called. Note these are in addition to
kwargs that could be passed as part of the event post. If there’s a conflict, the event-level
ones will win.

Returns A GUID reference to the handler which you can use to later remove the handler via
remove_handler_by_key. Though you don’t need to remove the handler since the
whole point of this method is they’re automatically removed when the mode stops.

Note that if you do add a handler via this method and then remove it manually, that’s ok too.

clear_all_credits(**kwargs)
Clear all credits.

configure_logging(logger, console_level=’basic’, file_level=’basic’)
Configure the logging for the module this class is mixed into.

94 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.33.49

Parameters

• logger – The string name of the logger to use

• console_level – The level of logging for the console. Valid options are "none", "ba-
sic", or "full".

• file_level – The level of logging for the console. Valid options are "none", "basic",
or "full".

debug_log(msg, *args, **kwargs)
Log a message at the debug level.

Note that whether this message shows up in the console or log file is controlled by the settings used with
configure_logging().

enable_credit_play(post_event=True, **kwargs)
Enable credits play.

enable_free_play(post_event=True, **kwargs)
Enable free play.

error_log(msg, *args, **kwargs)
Log a message at the error level.

These messages will always be shown in the console and the log file.

info_log(msg, *args, **kwargs)
Log a message at the info level.

Whether this message shows up in the console or log file is controlled by the settings used with config-
ure_logging().

start(mode_priority=None, callback=None, **kwargs)
Start this mode.

Parameters

• mode_priority – Integer value of what you want this mode to run at. If you don’t
specify one, it will use the "Mode: priority" setting from this mode’s configuration file.

• **kwargs – Catch-all since this mode might start from events with who-knows-what
keyword arguments.

Warning: You can safely call this method, but do not override it in your mode code. If you want to write
your own mode code by subclassing Mode, put whatever code you want to run when this mode starts in
the mode_start method which will be called automatically.

stop(callback=None, **kwargs)
Stop this mode.

Parameters **kwargs – Catch-all since this mode might start from events with who-knows-
what keyword arguments.

Warning: You can safely call this method, but do not override it in your mode code. If you want to write
your own mode code by subclassing Mode, put whatever code you want to run when this mode stops in
the mode_stop method which will be called automatically.

toggle_credit_play(**kwargs)
Toggle between free and credits play.

warning_log(msg, *args, **kwargs)
Log a message at the warning level.

These messages will always be shown in the console and the log file.

7.3. API Reference 95

MPF Documentation Developer Documentation, Release 0.33.49

self.machine.modes.game

class mpf.modes.game.code.game.Game(machine, config, name, path)
Bases: mpf.core.mode.Mode

Base mode that runs an active game on a pinball machine.

Responsible for creating players, starting and ending balls, rotating to the next player, etc.

Accessing the game mode via code

You can access the game mode from anywhere via self.machine.modes.game.

Methods & Attributes

The game mode has the following methods & attributes available. Note that methods & attributes inherited from
the base Mode class are not included here.

active
Return true if mode is active.

add_mode_event_handler(event, handler, priority=0, **kwargs)
Register an event handler which is automatically removed when this mode stops.

This method is similar to the Event Manager’s add_handler() method, except this method automatically
unregisters the handlers when the mode ends.

Parameters

• event – String name of the event you’re adding a handler for. Since events are text
strings, they don’t have to be pre-defined.

• handler – The method that will be called when the event is fired.

• priority – An arbitrary integer value that defines what order the handlers will be called
in. The default is 1, so if you have a handler that you want to be called first, add it here
with a priority of 2. (Or 3 or 10 or 100000.) The numbers don’t matter. They’re called
from highest to lowest. (i.e. priority 100 is called before priority 1.)

• **kwargs – Any any additional keyword/argument pairs entered here will be attached
to the handler and called whenever that handler is called. Note these are in addition to
kwargs that could be passed as part of the event post. If there’s a conflict, the event-level
ones will win.

Returns A GUID reference to the handler which you can use to later remove the handler via
remove_handler_by_key. Though you don’t need to remove the handler since the
whole point of this method is they’re automatically removed when the mode stops.

Note that if you do add a handler via this method and then remove it manually, that’s ok too.

award_extra_ball()
Called when the same player should shoot again.

ball_drained(balls=0, **kwargs)
Ball drained.

ball_ended(ev_result=True, **kwargs)
Called when the ball has successfully ended.

96 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.33.49

This method is called after all the registered handlers of the queue event ball_ended finish. (So typically
this means that animations have finished, etc.)

This method also decides if the same player should shoot again (if there’s an extra ball) or whether the
machine controller should rotate to the next player. It will also end the game if all players and balls are
done.

ball_ending()
Start the ball ending process.

This method posts the queue event ball_ending, giving other modules an opportunity to finish up whatever
they need to do before the ball ends. Once all the registered handlers for that event have finished, this
method calls ball_ended().

Currently this method also disables the autofire_coils and flippers, though that’s temporary as we’ll move
those into config file options.

ball_started(ev_result=True, **kwargs)
Ball started.

ball_starting(is_extra_ball=False)
Called when a new ball is starting.

Note this method is called for each ball that starts, even if it’s after a Shoot Again scenario for the same
player.

Posts a queue event called ball_starting, giving other modules the opportunity to do things before the ball
actually starts. Once that event is clear, this method calls ball_started().

balls_in_play
Return balls in play.

configure_logging(logger, console_level=’basic’, file_level=’basic’)
Configure the logging for the module this class is mixed into.

Parameters

• logger – The string name of the logger to use

• console_level – The level of logging for the console. Valid options are "none", "ba-
sic", or "full".

• file_level – The level of logging for the console. Valid options are "none", "basic",
or "full".

debug_log(msg, *args, **kwargs)
Log a message at the debug level.

Note that whether this message shows up in the console or log file is controlled by the settings used with
configure_logging().

error_log(msg, *args, **kwargs)
Log a message at the error level.

These messages will always be shown in the console and the log file.

game_ended(**kwargs)
Actually ends the game once the game_ending event is clear.

Eventually this method will do lots of things. For now it just advances the machine flow which ends the
Game mode and starts the Attract mode.

game_ending()
Called when the game decides it should end.

7.3. API Reference 97

MPF Documentation Developer Documentation, Release 0.33.49

This method posts the queue event game_ending, giving other modules an opportunity to finish up what-
ever they need to do before the game ends. Once all the registered handlers for that event have finished,
this method calls game_end().

game_started(ev_result=True, **kwargs)
All the modules that needed to do something on game start are done, so our game is officially ’started’.

info_log(msg, *args, **kwargs)
Log a message at the info level.

Whether this message shows up in the console or log file is controlled by the settings used with config-
ure_logging().

player_add_success(player, **kwargs)
Called when a new player is successfully added to the current game.

This includes when the first player is added.

player_rotate()
Rotate the game to the next player.

This method is called after a player’s turn is over, so it’s even used in single-player games between balls.

All it does really is set player to the next player’s number.

Args:

player_turn_start()
Called at the beginning of a player’s turn.

Note this method is only called when a new player is first up. So if the same player shoots again due to an
extra ball, this method is not called again.

player_turn_stop()
Called when player turn stopped.

request_player_add(**kwargs)
Called by any module that wants to add a player to an active game.

This method contains the logic to verify whether it’s ok to add a player. (For example, the game must be
on ball 1 and the current number of players must be less than the max number allowed.)

Assuming this method believes it’s ok to add a player, it posts the boolean event player_add_request to
give other modules the opportunity to deny it. (For example, a credits module might deny the request if
there are not enough credits in the machine.)

If player_add_request comes back True, the event player_add_success is posted with a reference to the
new player object as a player kwarg.

start(mode_priority=None, callback=None, **kwargs)
Start this mode.

Parameters

• mode_priority – Integer value of what you want this mode to run at. If you don’t
specify one, it will use the "Mode: priority" setting from this mode’s configuration file.

• **kwargs – Catch-all since this mode might start from events with who-knows-what
keyword arguments.

Warning: You can safely call this method, but do not override it in your mode code. If you want to write
your own mode code by subclassing Mode, put whatever code you want to run when this mode starts in
the mode_start method which will be called automatically.

98 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.33.49

stop(callback=None, **kwargs)
Stop this mode.

Parameters **kwargs – Catch-all since this mode might start from events with who-knows-
what keyword arguments.

Warning: You can safely call this method, but do not override it in your mode code. If you want to write
your own mode code by subclassing Mode, put whatever code you want to run when this mode stops in
the mode_stop method which will be called automatically.

warning_log(msg, *args, **kwargs)
Log a message at the warning level.

These messages will always be shown in the console and the log file.

self.machine.modes.high_score

class mpf.modes.high_score.code.high_score.HighScore(machine, config, name, path)
Bases: mpf.core.async_mode.AsyncMode

Mode which tracks high scores and lets the player enter its initials.

Accessing the high_score mode via code

You can access the high_score mode from anywhere via self.machine.modes.high_score.

Methods & Attributes

The high_score mode has the following methods & attributes available. Note that methods & attributes inherited
from the base Mode class are not included here.

active
Return true if mode is active.

add_mode_event_handler(event, handler, priority=0, **kwargs)
Register an event handler which is automatically removed when this mode stops.

This method is similar to the Event Manager’s add_handler() method, except this method automatically
unregisters the handlers when the mode ends.

Parameters

• event – String name of the event you’re adding a handler for. Since events are text
strings, they don’t have to be pre-defined.

• handler – The method that will be called when the event is fired.

• priority – An arbitrary integer value that defines what order the handlers will be called
in. The default is 1, so if you have a handler that you want to be called first, add it here
with a priority of 2. (Or 3 or 10 or 100000.) The numbers don’t matter. They’re called
from highest to lowest. (i.e. priority 100 is called before priority 1.)

• **kwargs – Any any additional keyword/argument pairs entered here will be attached
to the handler and called whenever that handler is called. Note these are in addition to
kwargs that could be passed as part of the event post. If there’s a conflict, the event-level
ones will win.

7.3. API Reference 99

MPF Documentation Developer Documentation, Release 0.33.49

Returns A GUID reference to the handler which you can use to later remove the handler via
remove_handler_by_key. Though you don’t need to remove the handler since the
whole point of this method is they’re automatically removed when the mode stops.

Note that if you do add a handler via this method and then remove it manually, that’s ok too.

configure_logging(logger, console_level=’basic’, file_level=’basic’)
Configure the logging for the module this class is mixed into.

Parameters

• logger – The string name of the logger to use

• console_level – The level of logging for the console. Valid options are "none", "ba-
sic", or "full".

• file_level – The level of logging for the console. Valid options are "none", "basic",
or "full".

debug_log(msg, *args, **kwargs)
Log a message at the debug level.

Note that whether this message shows up in the console or log file is controlled by the settings used with
configure_logging().

error_log(msg, *args, **kwargs)
Log a message at the error level.

These messages will always be shown in the console and the log file.

info_log(msg, *args, **kwargs)
Log a message at the info level.

Whether this message shows up in the console or log file is controlled by the settings used with config-
ure_logging().

start(mode_priority=None, callback=None, **kwargs)
Start this mode.

Parameters

• mode_priority – Integer value of what you want this mode to run at. If you don’t
specify one, it will use the "Mode: priority" setting from this mode’s configuration file.

• **kwargs – Catch-all since this mode might start from events with who-knows-what
keyword arguments.

Warning: You can safely call this method, but do not override it in your mode code. If you want to write
your own mode code by subclassing Mode, put whatever code you want to run when this mode starts in
the mode_start method which will be called automatically.

stop(callback=None, **kwargs)
Stop this mode.

Parameters **kwargs – Catch-all since this mode might start from events with who-knows-
what keyword arguments.

Warning: You can safely call this method, but do not override it in your mode code. If you want to write
your own mode code by subclassing Mode, put whatever code you want to run when this mode stops in
the mode_stop method which will be called automatically.

warning_log(msg, *args, **kwargs)
Log a message at the warning level.

These messages will always be shown in the console and the log file.

100 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.33.49

self.machine.modes.match

class mpf.modes.match.code.match.Match(machine, config, name, path)
Bases: mpf.core.async_mode.AsyncMode

Match mode.

Accessing the match mode via code

You can access the match mode from anywhere via self.machine.modes.match.

Methods & Attributes

The match mode has the following methods & attributes available. Note that methods & attributes inherited
from the base Mode class are not included here.

active
Return true if mode is active.

add_mode_event_handler(event, handler, priority=0, **kwargs)
Register an event handler which is automatically removed when this mode stops.

This method is similar to the Event Manager’s add_handler() method, except this method automatically
unregisters the handlers when the mode ends.

Parameters

• event – String name of the event you’re adding a handler for. Since events are text
strings, they don’t have to be pre-defined.

• handler – The method that will be called when the event is fired.

• priority – An arbitrary integer value that defines what order the handlers will be called
in. The default is 1, so if you have a handler that you want to be called first, add it here
with a priority of 2. (Or 3 or 10 or 100000.) The numbers don’t matter. They’re called
from highest to lowest. (i.e. priority 100 is called before priority 1.)

• **kwargs – Any any additional keyword/argument pairs entered here will be attached
to the handler and called whenever that handler is called. Note these are in addition to
kwargs that could be passed as part of the event post. If there’s a conflict, the event-level
ones will win.

Returns A GUID reference to the handler which you can use to later remove the handler via
remove_handler_by_key. Though you don’t need to remove the handler since the
whole point of this method is they’re automatically removed when the mode stops.

Note that if you do add a handler via this method and then remove it manually, that’s ok too.

configure_logging(logger, console_level=’basic’, file_level=’basic’)
Configure the logging for the module this class is mixed into.

Parameters

• logger – The string name of the logger to use

• console_level – The level of logging for the console. Valid options are "none", "ba-
sic", or "full".

• file_level – The level of logging for the console. Valid options are "none", "basic",
or "full".

7.3. API Reference 101

MPF Documentation Developer Documentation, Release 0.33.49

debug_log(msg, *args, **kwargs)
Log a message at the debug level.

Note that whether this message shows up in the console or log file is controlled by the settings used with
configure_logging().

error_log(msg, *args, **kwargs)
Log a message at the error level.

These messages will always be shown in the console and the log file.

info_log(msg, *args, **kwargs)
Log a message at the info level.

Whether this message shows up in the console or log file is controlled by the settings used with config-
ure_logging().

start(mode_priority=None, callback=None, **kwargs)
Start this mode.

Parameters

• mode_priority – Integer value of what you want this mode to run at. If you don’t
specify one, it will use the "Mode: priority" setting from this mode’s configuration file.

• **kwargs – Catch-all since this mode might start from events with who-knows-what
keyword arguments.

Warning: You can safely call this method, but do not override it in your mode code. If you want to write
your own mode code by subclassing Mode, put whatever code you want to run when this mode starts in
the mode_start method which will be called automatically.

stop(callback=None, **kwargs)
Stop this mode.

Parameters **kwargs – Catch-all since this mode might start from events with who-knows-
what keyword arguments.

Warning: You can safely call this method, but do not override it in your mode code. If you want to write
your own mode code by subclassing Mode, put whatever code you want to run when this mode stops in
the mode_stop method which will be called automatically.

warning_log(msg, *args, **kwargs)
Log a message at the warning level.

These messages will always be shown in the console and the log file.

self.machine.modes.service

class mpf.modes.service.code.service.Service(machine, config, name, path)
Bases: mpf.core.async_mode.AsyncMode

The service mode.

Accessing the service mode via code

You can access the service mode from anywhere via self.machine.modes.service.

102 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.33.49

Methods & Attributes

The service mode has the following methods & attributes available. Note that methods & attributes inherited
from the base Mode class are not included here.

active
Return true if mode is active.

add_mode_event_handler(event, handler, priority=0, **kwargs)
Register an event handler which is automatically removed when this mode stops.

This method is similar to the Event Manager’s add_handler() method, except this method automatically
unregisters the handlers when the mode ends.

Parameters

• event – String name of the event you’re adding a handler for. Since events are text
strings, they don’t have to be pre-defined.

• handler – The method that will be called when the event is fired.

• priority – An arbitrary integer value that defines what order the handlers will be called
in. The default is 1, so if you have a handler that you want to be called first, add it here
with a priority of 2. (Or 3 or 10 or 100000.) The numbers don’t matter. They’re called
from highest to lowest. (i.e. priority 100 is called before priority 1.)

• **kwargs – Any any additional keyword/argument pairs entered here will be attached
to the handler and called whenever that handler is called. Note these are in addition to
kwargs that could be passed as part of the event post. If there’s a conflict, the event-level
ones will win.

Returns A GUID reference to the handler which you can use to later remove the handler via
remove_handler_by_key. Though you don’t need to remove the handler since the
whole point of this method is they’re automatically removed when the mode stops.

Note that if you do add a handler via this method and then remove it manually, that’s ok too.

configure_logging(logger, console_level=’basic’, file_level=’basic’)
Configure the logging for the module this class is mixed into.

Parameters

• logger – The string name of the logger to use

• console_level – The level of logging for the console. Valid options are "none", "ba-
sic", or "full".

• file_level – The level of logging for the console. Valid options are "none", "basic",
or "full".

debug_log(msg, *args, **kwargs)
Log a message at the debug level.

Note that whether this message shows up in the console or log file is controlled by the settings used with
configure_logging().

error_log(msg, *args, **kwargs)
Log a message at the error level.

These messages will always be shown in the console and the log file.

info_log(msg, *args, **kwargs)
Log a message at the info level.

7.3. API Reference 103

MPF Documentation Developer Documentation, Release 0.33.49

Whether this message shows up in the console or log file is controlled by the settings used with config-
ure_logging().

start(mode_priority=None, callback=None, **kwargs)
Start this mode.

Parameters

• mode_priority – Integer value of what you want this mode to run at. If you don’t
specify one, it will use the "Mode: priority" setting from this mode’s configuration file.

• **kwargs – Catch-all since this mode might start from events with who-knows-what
keyword arguments.

Warning: You can safely call this method, but do not override it in your mode code. If you want to write
your own mode code by subclassing Mode, put whatever code you want to run when this mode starts in
the mode_start method which will be called automatically.

stop(callback=None, **kwargs)
Stop this mode.

Parameters **kwargs – Catch-all since this mode might start from events with who-knows-
what keyword arguments.

Warning: You can safely call this method, but do not override it in your mode code. If you want to write
your own mode code by subclassing Mode, put whatever code you want to run when this mode stops in
the mode_stop method which will be called automatically.

warning_log(msg, *args, **kwargs)
Log a message at the warning level.

These messages will always be shown in the console and the log file.

self.machine.modes.tilt

class mpf.modes.tilt.code.tilt.Tilt(machine: mpf.core.machine.MachineController, config:
dict, name: str, path)

Bases: mpf.core.mode.Mode

A mode which handles a tilt in a pinball machine.

Accessing the tilt mode via code

You can access the tilt mode from anywhere via self.machine.modes.tilt.

Methods & Attributes

The tilt mode has the following methods & attributes available. Note that methods & attributes inherited from
the base Mode class are not included here.

active
Return true if mode is active.

add_mode_event_handler(event, handler, priority=0, **kwargs)
Register an event handler which is automatically removed when this mode stops.

This method is similar to the Event Manager’s add_handler() method, except this method automatically
unregisters the handlers when the mode ends.

104 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.33.49

Parameters

• event – String name of the event you’re adding a handler for. Since events are text
strings, they don’t have to be pre-defined.

• handler – The method that will be called when the event is fired.

• priority – An arbitrary integer value that defines what order the handlers will be called
in. The default is 1, so if you have a handler that you want to be called first, add it here
with a priority of 2. (Or 3 or 10 or 100000.) The numbers don’t matter. They’re called
from highest to lowest. (i.e. priority 100 is called before priority 1.)

• **kwargs – Any any additional keyword/argument pairs entered here will be attached
to the handler and called whenever that handler is called. Note these are in addition to
kwargs that could be passed as part of the event post. If there’s a conflict, the event-level
ones will win.

Returns A GUID reference to the handler which you can use to later remove the handler via
remove_handler_by_key. Though you don’t need to remove the handler since the
whole point of this method is they’re automatically removed when the mode stops.

Note that if you do add a handler via this method and then remove it manually, that’s ok too.

configure_logging(logger, console_level=’basic’, file_level=’basic’)
Configure the logging for the module this class is mixed into.

Parameters

• logger – The string name of the logger to use

• console_level – The level of logging for the console. Valid options are "none", "ba-
sic", or "full".

• file_level – The level of logging for the console. Valid options are "none", "basic",
or "full".

debug_log(msg, *args, **kwargs)
Log a message at the debug level.

Note that whether this message shows up in the console or log file is controlled by the settings used with
configure_logging().

error_log(msg, *args, **kwargs)
Log a message at the error level.

These messages will always be shown in the console and the log file.

info_log(msg, *args, **kwargs)
Log a message at the info level.

Whether this message shows up in the console or log file is controlled by the settings used with config-
ure_logging().

reset_warnings(**kwargs)
Reset the tilt warnings for the current player.

slam_tilt(**kwargs)
Process a slam tilt.

start(mode_priority=None, callback=None, **kwargs)
Start this mode.

Parameters

7.3. API Reference 105

MPF Documentation Developer Documentation, Release 0.33.49

• mode_priority – Integer value of what you want this mode to run at. If you don’t
specify one, it will use the "Mode: priority" setting from this mode’s configuration file.

• **kwargs – Catch-all since this mode might start from events with who-knows-what
keyword arguments.

Warning: You can safely call this method, but do not override it in your mode code. If you want to write
your own mode code by subclassing Mode, put whatever code you want to run when this mode starts in
the mode_start method which will be called automatically.

stop(callback=None, **kwargs)
Stop this mode.

Parameters **kwargs – Catch-all since this mode might start from events with who-knows-
what keyword arguments.

Warning: You can safely call this method, but do not override it in your mode code. If you want to write
your own mode code by subclassing Mode, put whatever code you want to run when this mode stops in
the mode_stop method which will be called automatically.

tilt(**kwargs)
Cause the ball to tilt.

tilt_settle_ms_remaining()
Return the amount of milliseconds remaining until the tilt settle time has cleared.

tilt_warning(**kwargs)
Process a tilt warning.

If the number of warnings is the number to

cause a tilt, a tilt will be processed.

warning_log(msg, *args, **kwargs)
Log a message at the warning level.

These messages will always be shown in the console and the log file.

7.3.4 Hardware Platforms

Hardware platforms are stored in a machine hardware_platforms dictionary, for example, self.machine.
hardware_platforms['fast'] or self.machine.hardware_platforms['p_roc'].

self.machine.hardware_platforms[’fadecandy’]

class mpf.platforms.fadecandy.HardwarePlatform(machine)
Bases: mpf.platforms.openpixel.HardwarePlatform

Base class for the open pixel hardware platform.

Parameters machine – The main MachineController object.

Accessing the fadecandy platform via code

Hardware platforms are stored in the self.machine.hardware_platforms dictionary, so the fadecandy
platform is available via self.machine.hardware_platforms['fadecandy'].

106 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.33.49

Methods & Attributes

The fadecandy platform has the following methods & attributes available. Note that methods & attributes
inherited from base classes are not included here.

self.machine.hardware_platforms[’fast’]

class mpf.platforms.fast.fast.HardwarePlatform(machine)
Bases: mpf.core.platform.ServoPlatform, mpf.core.platform.
MatrixLightsPlatform, mpf.core.platform.GiPlatform, mpf.core.platform.
DmdPlatform, mpf.core.platform.LedPlatform, mpf.core.platform.SwitchPlatform,
mpf.core.platform.DriverPlatform

Platform class for the FAST hardware controller.

Parameters machine – The main MachineController instance.

Accessing the fast platform via code

Hardware platforms are stored in the self.machine.hardware_platforms dictionary, so the fast plat-
form is available via self.machine.hardware_platforms['fast'].

Methods & Attributes

The fast platform has the following methods & attributes available. Note that methods & attributes inherited
from base classes are not included here.

clear_hw_rule(switch, coil)
Clear a hardware rule.

This is used if you want to remove the linkage between a switch and some driver activity. For example, if
you wanted to disable your flippers (so that a player pushing the flipper buttons wouldn’t cause the flippers
to flip), you’d call this method with your flipper button as the sw_num.

Parameters

• switch – The switch whose rule you want to clear.

• coil – The coil whose rule you want to clear.

configure_dmd()
Configure a hardware DMD connected to a FAST controller.

configure_driver(config: dict)→ mpf.platforms.fast.fast_driver.FASTDriver
Configure a driver.

Parameters config – Driver config.

Returns: Driver object

configure_gi(config: dict)→ mpf.platforms.fast.fast_gi.FASTGIString
Configure a GI.

Parameters config – GI config.

Returns: GI object.

7.3. API Reference 107

MPF Documentation Developer Documentation, Release 0.33.49

configure_led(config: dict, channels: int)
Configure a WS2812 LED.

Parameters

• config – LED config.

• channels – Number of channels (3 for RGB)

Returns: LED object.

configure_matrixlight(config: dict)→ mpf.platforms.fast.fast_light.FASTMatrixLight
Configure a matrix light.

Parameters config – Matrix light config.

Returns: Matrix light object.

configure_servo(config: dict)
Configure a servo.

Parameters config – Servo config.

Returns: Servo object.

configure_switch(config: dict)→ mpf.platforms.fast.fast_switch.FASTSwitch
Configure the switch object for a FAST Pinball controller.

FAST Controllers support two types of switches: local and network. Local switches are switches that are
connected to the FAST controller board itself, and network switches are those connected to a FAST I/O
board.

MPF needs to know which type of switch is this is. You can specify the switch’s connection type in the
config file via the connection: setting (either local or network).

If a connection type is not specified, this method will use some intelligence to try to figure out which
default should be used.

If the DriverBoard type is fast, then it assumes the default is network. If it’s anything else (wpc,
system11, bally, etc.) then it assumes the connection type is local. Connection types can be mixed
and matched in the same machine.

Parameters config – Switch config.

Returns: Switch object.

convert_number_from_config(number)
Convert a number from config format to int.

classmethod get_coil_config_section()
Return coil config section.

classmethod get_coil_overwrite_section()
Return coil overwrite section.

get_hw_switch_states()
Return hardware states.

classmethod get_switch_config_section()
Return switch config section.

initialize()
Initialise platform.

process_received_message(msg: str)
Send an incoming message from the FAST controller to the proper method for servicing.

108 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.33.49

Parameters msg – messaged which was received

receive_local_closed(msg)
Process local switch closed.

Parameters msg – switch number

receive_local_open(msg)
Process local switch open.

Parameters msg – switch number

receive_nw_closed(msg)
Process network switch closed.

Parameters msg – switch number

receive_nw_open(msg)
Process network switch open.

Parameters msg – switch number

receive_sa(msg)
Receive all switch states.

Parameters msg – switch states as bytearray

register_io_board(board)
Register an IO board.

Parameters board – ’mpf.platform.fast.fast_io_board.FastIoBoard’ to register

register_processor_connection(name: str, communicator)
Register processor.

Once a communication link has been established with one of the processors on the FAST board, this
method lets the communicator let MPF know which processor it’s talking to.

This is a separate method since we don’t know which processor is on which serial port ahead of time.

Parameters

• communicator – communicator object

• name – name of processor

set_pulse_on_hit_and_enable_and_release_and_disable_rule(enable_switch, dis-
able_switch, coil)

Set pulse on hit and enable and release and disable rule on driver.

set_pulse_on_hit_and_enable_and_release_rule(enable_switch, coil)
Set pulse on hit and enable and relase rule on driver.

set_pulse_on_hit_and_release_rule(enable_switch, coil)
Set pulse on hit and release rule to driver.

set_pulse_on_hit_rule(enable_switch, coil)
Set pulse on hit rule on driver.

stop()
Stop platform and close connections.

update_leds(dt)
Update all the LEDs connected to a FAST controller.

This is done once per game loop for efficiency (i.e. all LEDs are sent as a single update rather than lots of
individual ones).

7.3. API Reference 109

MPF Documentation Developer Documentation, Release 0.33.49

Also, every LED is updated every loop, even if it doesn’t change. This is in case some interference causes
a LED to change color. Since we update every loop, it will only be the wrong color for one tick.

Parameters dt – time since last call

validate_switch_overwrite_section(switch: mpf.devices.switch.Switch, config_overwrite:
dict)→ dict

Validate switch overwrite section for platform.

Parameters

• switch – switch to validate

• config_overwrite – overwrite config to validate

Returns: Validated config.

self.machine.hardware_platforms[’i2c_servo_controller’]

class mpf.platforms.i2c_servo_controller.HardwarePlatform(machine)
Bases: mpf.core.platform.ServoPlatform

Supports the PCA9685/PCA9635 chip via I2C.

Accessing the i2c_servo_controller platform via code

Hardware platforms are stored in the self.machine.hardware_platforms dic-
tionary, so the i2c_servo_controller platform is available via self.machine.
hardware_platforms['i2c_servo_controller'].

Methods & Attributes

The i2c_servo_controller platform has the following methods & attributes available. Note that methods &
attributes inherited from base classes are not included here.

configure_servo(config)
Configure servo.

initialize()
Method is called after all hardware platforms were instantiated.

stop()
Stop platform.

self.machine.hardware_platforms[’openpixel’]

class mpf.platforms.openpixel.HardwarePlatform(machine)
Bases: mpf.core.platform.LedPlatform

Base class for the open pixel hardware platform.

Parameters machine – The main MachineController object.

110 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.33.49

Accessing the openpixel platform via code

Hardware platforms are stored in the self.machine.hardware_platforms dictionary, so the openpixel
platform is available via self.machine.hardware_platforms['openpixel'].

Methods & Attributes

The openpixel platform has the following methods & attributes available. Note that methods & attributes inher-
ited from base classes are not included here.

configure_led(config, channels)
Configure an LED.

Parameters

• config – config dict of led

• channels – number of channels (up to three are supported)

initialize()
Initialise openpixel platform.

stop()
Stop platform.

self.machine.hardware_platforms[’opp’]

class mpf.platforms.opp.opp.HardwarePlatform(machine)
Bases: mpf.core.platform.MatrixLightsPlatform, mpf.core.platform.LedPlatform,
mpf.core.platform.SwitchPlatform, mpf.core.platform.DriverPlatform

Platform class for the OPP hardware.

Parameters machine – The main MachineController instance.

Accessing the opp platform via code

Hardware platforms are stored in the self.machine.hardware_platforms dictionary, so the opp plat-
form is available via self.machine.hardware_platforms['opp'].

Methods & Attributes

The opp platform has the following methods & attributes available. Note that methods & attributes inherited
from base classes are not included here.

clear_hw_rule(switch, coil)
Clear a hardware rule.

This is used if you want to remove the linkage between a switch and some driver activity. For example, if
you wanted to disable your flippers (so that a player pushing the flipper buttons wouldn’t cause the flippers
to flip), you’d call this method with your flipper button as the sw_num.

configure_driver(config: dict)
Configure a driver.

Parameters config – Config dict.

7.3. API Reference 111

MPF Documentation Developer Documentation, Release 0.33.49

configure_led(config: dict, channels: int)
Configure LED.

Parameters

• config – Config dict.

• channels – Number of channels. OPP supports up to three.

configure_matrixlight(config)
Configure a direct incandescent bulb.

Parameters config – Config dict.

configure_switch(config: dict)
Configure a switch.

Parameters config – Config dict.

static eom_resp(chain_serial, msg)
Process an EOM.

Parameters

• chain_serial – Serial of the chain which received the message.

• msg – Message to parse.

classmethod get_coil_config_section()
Return coil config section.

get_gen2_cfg_resp(chain_serial, msg)
Process cfg response.

Parameters

• chain_serial – Serial of the chain which received the message.

• msg – Message to parse.

classmethod get_hold_value(coil)
Get OPP hold value (0-15).

get_hw_switch_states()
Get initial hardware switch states.

This changes switches from active low to active high

classmethod get_minimum_off_time(coil)
Return minimum off factor.

The hardware applies this factor to pulse_ms to prevent the coil from burning.

initialize()
Initialise connections to OPP hardware.

inv_resp(chain_serial, msg)
Parse inventory response.

Parameters

• chain_serial – Serial of the chain which received the message.

• msg – Message to parse.

process_received_message(chain_serial, msg)
Send an incoming message from the OPP hardware to the proper method for servicing.

112 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.33.49

Parameters

• chain_serial – Serial of the chain which received the message.

• msg – Message to parse.

read_gen2_inp_resp(chain_serial, msg)
Read switch changes.

Parameters

• chain_serial – Serial of the chain which received the message.

• msg – Message to parse.

read_gen2_inp_resp_initial(chain_serial, msg)
Read initial switch states.

Parameters

• chain_serial – Serial of the chain which received the message.

• msg – Message to parse.

read_matrix_inp_resp(chain_serial, msg)
Read matrix switch changes.

Parameters

• chain_serial – Serial of the chain which received the message.

• msg – Message to parse.

read_matrix_inp_resp_initial(chain_serial, msg)
Read initial matrix switch states.

Parameters

• chain_serial – Serial of the chain which received the message.

• msg – Message to parse.

reconfigure_driver(driver, use_hold: bool)
Reconfigure a driver.

Parameters

• driver – Driver object.

• use_hold – Whether this driver stays enabled after a trigger or not.

register_processor_connection(serial_number, communicator)
Register the processors to the platform.

Parameters

• serial_number – Serial number of chain.

• communicator – Instance of OPPSerialCommunicator

send_to_processor(chain_serial, msg)
Send message to processor with specific serial number.

Parameters

• chain_serial – Serial of the processor.

• msg – Message to send.

7.3. API Reference 113

MPF Documentation Developer Documentation, Release 0.33.49

set_pulse_on_hit_and_enable_and_release_and_disable_rule(enable_switch, dis-
able_switch, coil)

Set pulse on hit and enable and release and disable rule on driver.

Pulses a driver when a switch is hit. Then enables the driver (may be with pwm). When the switch is
released the pulse is canceled and the driver gets disabled. When the second disable_switch is hit the pulse
is canceled and the driver gets disabled. Typically used on the main coil for dual coil flippers with eos
switch.

set_pulse_on_hit_and_enable_and_release_rule(enable_switch, coil)
Set pulse on hit and enable and relase rule on driver.

Pulses a driver when a switch is hit. Then enables the driver (may be with pwm). When the switch is
released the pulse is canceled and the driver gets disabled. Typically used for single coil flippers.

set_pulse_on_hit_and_release_rule(enable_switch, coil)
Set pulse on hit and release rule to driver.

Pulses a driver when a switch is hit. When the switch is released the pulse is canceled. Typically used on
the main coil for dual coil flippers without eos switch.

set_pulse_on_hit_rule(enable_switch, coil)
Set pulse on hit rule on driver.

Pulses a driver when a switch is hit. When the switch is released the pulse continues. Typically used for
autofire coils such as pop bumpers.

stop()
Stop hardware and close connections.

update_incand()
Update all the incandescents connected to OPP hardware.

This is done once per game loop if changes have been made.

It is currently assumed that the UART oversampling will guarantee proper communication with the boards.
If this does not end up being the case, this will be changed to update all the incandescents each loop.

vers_resp(chain_serial, msg)
Process version response.

Parameters

• chain_serial – Serial of the chain which received the message.

• msg – Message to parse.

self.machine.hardware_platforms[’p3_roc’]

class mpf.platforms.p3_roc.HardwarePlatform(machine)
Bases: mpf.platforms.p_roc_common.PROCBasePlatform, mpf.core.platform.
I2cPlatform, mpf.core.platform.AccelerometerPlatform

Platform class for the P3-ROC hardware controller.

Parameters machine – The MachineController instance.

machine
The MachineController instance.

114 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.33.49

Accessing the p3_roc platform via code

Hardware platforms are stored in the self.machine.hardware_platforms dictionary, so the p3_roc
platform is available via self.machine.hardware_platforms['p3_roc'].

Methods & Attributes

The p3_roc platform has the following methods & attributes available. Note that methods & attributes inherited
from base classes are not included here.

configure_accelerometer(config, callback)
Configure the accelerometer on the P3-ROC.

configure_driver(config)
Create a P3-ROC driver.

Typically drivers are coils or flashers, but for the P3-ROC this is also used for matrix-based lights.

Parameters config – Dictionary of settings for the driver.

Returns A reference to the PROCDriver object which is the actual object you can use to pulse(),
patter(), enable(), etc.

configure_gi(config)
Configure a GI driver on the P3-Roc.

GIs are coils in P3-Roc

configure_matrixlight(config)
Configure a matrix light in P3-Roc.

configure_switch(config)
Configure a P3-ROC switch.

Parameters config – Dictionary of settings for the switch. In the case of the P3-ROC, it uses
the following:

Returns

A reference to the switch object that was just created. proc_num : Integer of the actual
hardware switch number the P3-ROC

uses to refer to this switch. Typically your machine configuration files would specify a
switch number like SD12 or 7/5. This proc_num is an int between 0 and 255.

Return type switch

get_hw_switch_states()
Read in and set the initial switch state.

The P-ROC uses the following values for hw switch states: 1 - closed (debounced) 2 - open (debounced) 3
- closed (not debounced) 4 - open (not debounced)

i2c_read16(address, register)
Read an 16-bit value from the I2C bus of the P3-Roc.

i2c_read8(address, register)
Read an 8-bit value from the I2C bus of the P3-Roc.

i2c_write8(address, register, value)
Write an 8-bit value to the I2C bus of the P3-Roc.

7.3. API Reference 115

MPF Documentation Developer Documentation, Release 0.33.49

classmethod scale_accelerometer_to_g(raw_value)
Convert internal representation to g.

tick(dt)
Check the P3-ROC for any events (switch state changes).

Also tickles the watchdog and flushes any queued commands to the P3-ROC.

self.machine.hardware_platforms[’p_roc’]

class mpf.platforms.p_roc.HardwarePlatform(machine)
Bases: mpf.platforms.p_roc_common.PROCBasePlatform, mpf.core.platform.
DmdPlatform

Platform class for the P-ROC hardware controller.

Parameters machine – The MachineController instance.

machine
The MachineController instance.

Accessing the p_roc platform via code

Hardware platforms are stored in the self.machine.hardware_platforms dictionary, so the p_roc
platform is available via self.machine.hardware_platforms['p_roc'].

Methods & Attributes

The p_roc platform has the following methods & attributes available. Note that methods & attributes inherited
from base classes are not included here.

configure_dmd()
Configure a hardware DMD connected to a classic P-ROC.

configure_driver(config)
Create a P-ROC driver.

Typically drivers are coils or flashers, but for the P-ROC this is also used for matrix-based lights.

Parameters config – Dictionary of settings for the driver.

Returns A reference to the PROCDriver object which is the actual object you can use to pulse(),
patter(), enable(), etc.

configure_gi(config)
Configure a GI.

configure_matrixlight(config)
Configure a matrix light.

configure_switch(config)
Configure a P-ROC switch.

Parameters config – Dictionary of settings for the switch. In the case of the P-ROC, it uses
the following:

116 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.33.49

Returns

A reference to the switch object that was just created. proc_num : Integer of the actual
hardware switch number the P-ROC

uses to refer to this switch. Typically your machine configuration files would specify a
switch number like SD12 or 7/5. This proc_num is an int between 0 and 255.

Return type switch

get_hw_switch_states()
Read in and set the initial switch state.

The P-ROC uses the following values for hw switch states: 1 - closed (debounced) 2 - open (debounced) 3
- closed (not debounced) 4 - open (not debounced)

tick(dt)
Check the P-ROC for any events (switch state changes or notification that a DMD frame was updated).

Also tickles the watchdog and flushes any queued commands to the P-ROC.

self.machine.hardware_platforms[’pololu_maestro’]

class mpf.platforms.pololu_maestro.HardwarePlatform(machine)
Bases: mpf.core.platform.ServoPlatform

Supports the Pololu Maestro servo controllers via PySerial.

Works with Micro Maestro 6, and Mini Maestro 12, 18, and 24.

Accessing the pololu_maestro platform via code

Hardware platforms are stored in the self.machine.hardware_platforms
dictionary, so the pololu_maestro platform is available via self.machine.
hardware_platforms['pololu_maestro'].

Methods & Attributes

The pololu_maestro platform has the following methods & attributes available. Note that methods & attributes
inherited from base classes are not included here.

configure_servo(config)
Configure a servo device in paltform.

Parameters config (dict) – Configuration of device

initialize()
Method is called after all hardware platforms were instantiated.

stop()
Close serial.

self.machine.hardware_platforms[’smart_virtual’]

class mpf.platforms.smart_virtual.HardwarePlatform(machine)
Bases: mpf.platforms.virtual.HardwarePlatform

Base class for the smart_virtual hardware platform.

7.3. API Reference 117

MPF Documentation Developer Documentation, Release 0.33.49

Accessing the smart_virtual platform via code

Hardware platforms are stored in the self.machine.hardware_platforms dictionary, so the
smart_virtual platform is available via self.machine.hardware_platforms['smart_virtual'].

Methods & Attributes

The smart_virtual platform has the following methods & attributes available. Note that methods & attributes
inherited from base classes are not included here.

add_ball_to_device(device)
Add ball to device.

configure_driver(config)
Configure driver.

initialize()
Initialise platform.

self.machine.hardware_platforms[’smartmatrix’]

class mpf.platforms.smartmatrix.SmartMatrix(machine)
Bases: mpf.core.platform.RgbDmdPlatform

SmartMatrix RGB DMD.

Accessing the smartmatrix platform via code

Hardware platforms are stored in the self.machine.hardware_platforms dictionary, so the smartma-
trix platform is available via self.machine.hardware_platforms['smartmatrix'].

Methods & Attributes

The smartmatrix platform has the following methods & attributes available. Note that methods & attributes
inherited from base classes are not included here.

configure_rgb_dmd()
Configure rgb dmd.

initialize()
Initialise platform.

stop()
Stop platform.

update(data)
Update DMD data.

self.machine.hardware_platforms[’snux’]

class mpf.platforms.snux.HardwarePlatform(machine)
Bases: mpf.core.platform.DriverPlatform

Overlay platform for the snux hardware board.

118 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.33.49

Accessing the snux platform via code

Hardware platforms are stored in the self.machine.hardware_platforms dictionary, so the snux plat-
form is available via self.machine.hardware_platforms['snux'].

Methods & Attributes

The snux platform has the following methods & attributes available. Note that methods & attributes inherited
from base classes are not included here.

a_side_busy
True when A side cannot be switches off right away.

c_side_active
True when C side cannot be switches off right away.

clear_hw_rule(switch, coil)
Clear a rule for a driver on the snux board.

configure_driver(config)
Configure a driver on the snux board.

Parameters config – Driver config dict

driver_action(driver, coil, milliseconds)
Add a driver action for a switched driver to the queue (for either the A-side or C-side queue).

Parameters

• driver – A reference to the original platform class Driver instance.

• milliseconds – Integer of the number of milliseconds this action is for. 0 = pulse, -1
= enable (hold), any other value is a timed action (either pulse or long_pulse)

This action will be serviced immediately if it can, or ASAP otherwise.

initialize()
Automatically called by the Platform class after all the core modules are loaded.

set_pulse_on_hit_and_enable_and_release_and_disable_rule(enable_switch, dis-
able_switch, coil)

Configure a rule for a driver on the snux board.

Will pass the call onto the parent platform if the driver is not on A/C relay.

set_pulse_on_hit_and_enable_and_release_rule(enable_switch, coil)
Configure a rule for a driver on the snux board.

Will pass the call onto the parent platform if the driver is not on A/C relay.

set_pulse_on_hit_and_release_rule(enable_switch, coil)
Configure a rule for a driver on the snux board.

Will pass the call onto the parent platform if the driver is not on A/C relay.

set_pulse_on_hit_rule(enable_switch, coil)
Configure a rule on the snux board.

Will pass the call onto the parent platform if the driver is not on A/C relay.

stop()
Stop the overlay. Nothing to do here because stop is also called on parent platform.

7.3. API Reference 119

MPF Documentation Developer Documentation, Release 0.33.49

tick(dt)
Snux main loop.

Called based on the timer_tick event

Parameters dt – time since last call

validate_coil_section(driver, config)
Validate coil config for platform.

self.machine.hardware_platforms[’spike’]

class mpf.platforms.spike.spike.SpikePlatform(machine)
Bases: mpf.core.platform.SwitchPlatform, mpf.core.platform.
MatrixLightsPlatform, mpf.core.platform.DriverPlatform, mpf.core.platform.
DmdPlatform

Stern Spike Platform.

Accessing the spike platform via code

Hardware platforms are stored in the self.machine.hardware_platforms dictionary, so the spike
platform is available via self.machine.hardware_platforms['spike'].

Methods & Attributes

The spike platform has the following methods & attributes available. Note that methods & attributes inherited
from base classes are not included here.

clear_hw_rule(switch, coil)
Disable hardware rule for this coil.

configure_dmd()
Configure a DMD.

configure_driver(config)
Configure a driver on Stern Spike.

configure_matrixlight(config)
Configure a light on Stern Spike.

configure_switch(config)
Configure switch on Stern Spike.

get_hw_switch_states()
Return current switch states.

initialize()
Initialise platform.

send_cmd_and_wait_for_response(node, cmd, data, response_len) → typing.Generator[[int,
NoneType], str]

Send cmd and wait for response.

send_cmd_async(node, cmd, data)
Send cmd which does not require a response.

120 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.33.49

send_cmd_raw(data, wait_ms=0)
Send raw command.

send_cmd_sync(node, cmd, data)
Send cmd which does not require a response.

set_pulse_on_hit_and_enable_and_release_and_disable_rule(enable_switch, dis-
able_switch, coil)

Set pulse on hit and release rule to driver.

Used for high-power coil on dual-wound flippers. Example from WWE: Type: 8 Cmd: 65 Node: 8 Msg:
0x00 0xff 0x33 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x42 0x40
0x00 0x02 0x06 0x00 Len: 25

set_pulse_on_hit_and_enable_and_release_rule(enable_switch, coil)
Set pulse on hit and enable and relase rule on driver.

Used for single coil flippers. Examples from WWE: Dual-wound flipper hold coil: Type: 8 Cmd: 65 Node:
8 Msg: 0x02 0xff 0x46 0x01 0xff 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x3a 0x00 0x42
0x40 0x00 0x00 0x01 0x00 Len: 25

Ring Slings (different flags): Type: 8 Cmd: 65 Node: 10 Msg: 0x00 0xff 0x19 0x00 0x14 0x00 0x00 0x00
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x80 0x00 0x4a 0x40 0x00 0x00 0x06 0x05 Len: 25

set_pulse_on_hit_and_release_rule(enable_switch, coil)
Set pulse on hit and release rule to driver.

I believe that param2 == 1 means that it will cancel the pulse when the switch is released.

Used for high-power coils on dual-wound flippers. Example from WWE: Type: 8 Cmd: 65 Node: 8 Msg:
0x03 0xff 0x46 0x01 0xff 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x43 0x40
0x00 0x00 0x01 0x00 Len: 25

set_pulse_on_hit_rule(enable_switch, coil)
Set pulse on hit rule on driver.

This is mostly used for popbumpers. Example from WWE: Type: 8 Cmd: 65 Node: 9 Msg: 0x00 0xa6
0x28 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x14 0x00 0x00 0x00 0x38 0x00 0x40 0x00 0x00 0x00
0x00 0x00 Len: 25

stop()
Stop hardware and close connections.

self.machine.hardware_platforms[’virtual’]

class mpf.platforms.virtual.HardwarePlatform(machine)
Bases: mpf.core.platform.AccelerometerPlatform, mpf.core.platform.I2cPlatform,
mpf.core.platform.ServoPlatform, mpf.core.platform.MatrixLightsPlatform,
mpf.core.platform.GiPlatform, mpf.core.platform.LedPlatform, mpf.core.
platform.SwitchPlatform, mpf.core.platform.DriverPlatform, mpf.core.
platform.DmdPlatform, mpf.core.platform.RgbDmdPlatform

Base class for the virtual hardware platform.

Accessing the virtual platform via code

Hardware platforms are stored in the self.machine.hardware_platforms dictionary, so the virtual
platform is available via self.machine.hardware_platforms['virtual'].

7.3. API Reference 121

MPF Documentation Developer Documentation, Release 0.33.49

Methods & Attributes

The virtual platform has the following methods & attributes available. Note that methods & attributes inherited
from base classes are not included here.

clear_hw_rule(switch, coil)
Clear hw rule.

configure_accelerometer(config, callback)
Configure accelerometer.

configure_dmd()
Configure DMD.

configure_driver(config)
Configure driver.

configure_gi(config)
Configure GI.

configure_led(config, channels)
Configure led.

configure_matrixlight(config)
Configure matrix light.

configure_rgb_dmd()
Configure DMD.

configure_servo(config)
Configure a servo device in paltform.

configure_switch(config)
Configure switch.

get_hw_switch_states()
Return hw switch states.

i2c_read16(address, register)
Read I2C.

i2c_read8(address, register)
Read I2C.

i2c_write8(address, register, value)
Write to I2C.

initialize()
Initialise platform.

set_pulse_on_hit_and_enable_and_release_and_disable_rule(enable_switch, dis-
able_switch, coil)

Set rule.

set_pulse_on_hit_and_enable_and_release_rule(enable_switch, coil)
Set rule.

set_pulse_on_hit_and_release_rule(enable_switch, coil)
Set rule.

set_pulse_on_hit_rule(enable_switch, coil)
Set rule.

122 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.33.49

stop()
Stop platform.

validate_coil_overwrite_section(driver, config_overwrite)
Validate coil overwrite sections.

validate_coil_section(driver, config)
Validate coil sections.

validate_switch_overwrite_section(switch, config_overwrite)
Validate switch overwrite sections.

validate_switch_section(switch, config)
Validate switch sections.

7.3.5 Config Players

Config players are available as machine attributes in the form of their player name plus _player, for example,
self.machine.light_player or self.machine.score_player.

self.machine.coil_player

class mpf.config_players.coil_player.CoilPlayer(machine)
Bases: mpf.config_players.device_config_player.DeviceConfigPlayer

Triggers coils based on config.

Accessing the coil_player in code

The coil_player is available via self.machine.coil_player.

Methods & Attributes

The coil_player has the following methods & attributes available. Note that methods & attributes inherited from
the base class are not included here.

clear_context(context)
Disable enabled coils.

get_express_config(value)
Parse short config version.

play(settings, context, priority=0, **kwargs)
Enable, Pulse or disable coils.

self.machine.event_player

class mpf.config_players.event_player.EventPlayer(machine)
Bases: mpf.config_players.flat_config_player.FlatConfigPlayer

Posts events based on config.

7.3. API Reference 123

MPF Documentation Developer Documentation, Release 0.33.49

Accessing the event_player in code

The event_player is available via self.machine.event_player.

Methods & Attributes

The event_player has the following methods & attributes available. Note that methods & attributes inherited
from the base class are not included here.

get_express_config(value)
Parse short config.

get_list_config(value)
Parse list.

play(settings, context, calling_context, priority=0, **kwargs)
Post (delayed) events.

self.machine.flasher_player

class mpf.config_players.flasher_player.FlasherPlayer(machine)
Bases: mpf.config_players.device_config_player.DeviceConfigPlayer

Triggers flashers based on config.

Accessing the flasher_player in code

The flasher_player is available via self.machine.flasher_player.

Methods & Attributes

The flasher_player has the following methods & attributes available. Note that methods & attributes inherited
from the base class are not included here.

get_express_config(value)
Parse express config.

play(settings, context, calling_context, priority=0, **kwargs)
Flash flashers.

self.machine.gi_player

class mpf.config_players.gi_player.GiPlayer(machine)
Bases: mpf.config_players.device_config_player.DeviceConfigPlayer

Enables GIs based on config.

Accessing the gi_player in code

The gi_player is available via self.machine.gi_player.

124 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.33.49

Methods & Attributes

The gi_player has the following methods & attributes available. Note that methods & attributes inherited from
the base class are not included here.

clear_context(context)
Disable all used GIs at the end.

get_express_config(value)
Parse express config.

play(settings, context, calling_context, priority=0, **kwargs)
Enable GIs.

self.machine.led_player

class mpf.config_players.led_player.LedPlayer(machine)
Bases: mpf.config_players.device_config_player.DeviceConfigPlayer

Sets LED color based on config.

Accessing the led_player in code

The led_player is available via self.machine.led_player.

Methods & Attributes

The led_player has the following methods & attributes available. Note that methods & attributes inherited from
the base class are not included here.

clear_context(context)
Remove all colors which were set in context.

get_express_config(value)
Parse express config.

get_full_config(value)
Return full config.

play(settings, context, calling_context, priority=0, **kwargs)
Set LED color based on config.

self.machine.light_player

class mpf.config_players.light_player.LightPlayer(machine)
Bases: mpf.config_players.device_config_player.DeviceConfigPlayer

Sets lights based on config.

Accessing the light_player in code

The light_player is available via self.machine.light_player.

7.3. API Reference 125

MPF Documentation Developer Documentation, Release 0.33.49

Methods & Attributes

The light_player has the following methods & attributes available. Note that methods & attributes inherited
from the base class are not included here.

clear_context(context)
Remove all brightness which was set in context.

get_express_config(value)
Parse express config.

get_full_config(value)
Return full config.

play(settings, context, calling_context, priority=0, **kwargs)
Set brightness based on config.

self.machine.queue_event_player

class mpf.config_players.queue_event_player.QueueEventPlayer(machine)
Bases: mpf.core.config_player.ConfigPlayer

Posts queue events based on config.

Accessing the queue_event_player in code

The queue_event_player is available via self.machine.queue_event_player.

Methods & Attributes

The queue_event_player has the following methods & attributes available. Note that methods & attributes
inherited from the base class are not included here.

get_express_config(value)
No express config.

play(settings, context, priority=0, **kwargs)
Post queue events.

validate_config_entry(settings, name)
Validate one entry of this player.

self.machine.queue_relay_player

class mpf.config_players.queue_relay_player.QueueRelayPlayer(machine)
Bases: mpf.core.config_player.ConfigPlayer

Blocks queue events and converts them to normal events.

Accessing the queue_relay_player in code

The queue_relay_player is available via self.machine.queue_relay_player.

126 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.33.49

Methods & Attributes

The queue_relay_player has the following methods & attributes available. Note that methods & attributes inher-
ited from the base class are not included here.

clear_context(context)
Clear all queues.

get_express_config(value)
No express config.

play(settings, context, priority=0, **kwargs)
Block queue event.

validate_config_entry(settings, name)
Validate one entry of this player.

self.machine.random_event_player

class mpf.config_players.random_event_player.RandomEventPlayer(machine)
Bases: mpf.core.config_player.ConfigPlayer

Plays a random event based on config.

Accessing the random_event_player in code

The random_event_player is available via self.machine.random_event_player.

Methods & Attributes

The random_event_player has the following methods & attributes available. Note that methods & attributes
inherited from the base class are not included here.

get_express_config(value)
Parse express config.

get_list_config(value)
Parse list.

play(settings, context, calling_context, priority=0, **kwargs)
Play a random event from list based on config.

validate_config_entry(settings, name)
Validate one entry of this player.

self.machine.score_player

class mpf.config_players.score_player.ScorePlayer(machine)
Bases: mpf.core.config_player.ConfigPlayer

Posts events based on config.

7.3. API Reference 127

MPF Documentation Developer Documentation, Release 0.33.49

Accessing the score_player in code

The score_player is available via self.machine.score_player.

Methods & Attributes

The score_player has the following methods & attributes available. Note that methods & attributes inherited
from the base class are not included here.

clear_context(context)
Clear context.

get_express_config(value)
Parse express config.

get_list_config(value)
Parse list.

play(settings, context, calling_context, priority=0, **kwargs)
Score variable.

validate_config_entry(settings, name)
Validate one entry of this player.

self.machine.show_player

class mpf.config_players.show_player.ShowPlayer(machine)
Bases: mpf.config_players.device_config_player.DeviceConfigPlayer

Plays, starts, stops, pauses, resumes or advances shows based on config.

Accessing the show_player in code

The show_player is available via self.machine.show_player.

Methods & Attributes

The show_player has the following methods & attributes available. Note that methods & attributes inherited
from the base class are not included here.

clear_context(context)
Stop running shows from context.

get_express_config(value)
Parse express config.

play(settings, context, calling_context, priority=0, queue=None, **kwargs)
Play, start, stop, pause, resume or advance show based on config.

self.machine.trigger_player

class mpf.config_players.trigger_player.TriggerPlayer(machine)
Bases: mpf.config_players.device_config_player.DeviceConfigPlayer

128 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.33.49

Executes BCP triggers based on config.

Accessing the trigger_player in code

The trigger_player is available via self.machine.trigger_player.

Methods & Attributes

The trigger_player has the following methods & attributes available. Note that methods & attributes inherited
from the base class are not included here.

get_express_config(value)
Not supported.

play(settings, context, calling_context, priority=0, **kwargs)
Execute BCP triggers.

7.3.6 Testing Class API

MPF includes several unit test classes which you can use to write tests which test MPF or to write tests for your own
game.

These tests include several MPF-specific assertion methods for things like modes, players, balls, device states, etc., as
well as logic which advances the time and mocks the BCP and hardware connections.

You can add commands in your tests to "advance" the time which the MPF tests can test quickly, so you can test a
complete 3-minute game play session in a few hundred milliseconds of real world time.

It might be helpful to look at the real internal tests that MPF uses (which all use these test classes) to get a feel for how
tests are written in MPF. They’re available in the mpf/tests folder in the MPF repository. (They’re installed locally
when you install MPF.)

Here’s a diagram which shows how all the MPF and MPF-MC test case classes relate to each other:

7.3. API Reference 129

https://github.com/missionpinball/mpf/tree/dev/mpf/tests

MPF Documentation Developer Documentation, Release 0.33.49

And the API reference for each:

MockBcpClient

class mpf.tests.MpfBcpTestCase.MockBcpClient(machine, name, bcp)
Bases: mpf.core.bcp.bcp_client.BaseBcpClient

Methods & Attributes

The MockBcpClient has the following methods & attributes available. Note that methods & attributes inherited
from the base class are not included here.

warning_log(msg, *args, **kwargs)
Log a message at the warning level.

These messages will always be shown in the console and the log file.

MpfBcpTestCase

class mpf.tests.MpfBcpTestCase.MpfBcpTestCase(methodName=’runTest’)
Bases: mpf.tests.MpfTestCase.MpfTestCase

MpfTestCase with mocked BCP.

130 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.33.49

Methods & Attributes

The MpfBcpTestCase has the following methods & attributes available. Note that methods & attributes inherited
from the base class are not included here.

assertAlmostEqual(first, second, places=None, msg=None, delta=None)
Fail if the two objects are unequal as determined by their difference rounded to the given number of decimal
places (default 7) and comparing to zero, or by comparing that the between the two objects is more than
the given delta.

Note that decimal places (from zero) are usually not the same as significant digits (measured from the most
signficant digit).

If the two objects compare equal then they will automatically compare almost equal.

assertCountEqual(first, second, msg=None)
An unordered sequence comparison asserting that the same elements, regardless of order. If the same
element occurs more than once, it verifies that the elements occur the same number of times.

self.assertEqual(Counter(list(first)), Counter(list(second)))

Example:

• [0, 1, 1] and [1, 0, 1] compare equal.

• [0, 0, 1] and [0, 1] compare unequal.

assertDictContainsSubset(subset, dictionary, msg=None)
Checks whether dictionary is a superset of subset.

assertEqual(first, second, msg=None)
Fail if the two objects are unequal as determined by the ’==’ operator.

assertEventCalled(event_name, times=None)
Assert that event was called.

assertEventCalledWith(event_name, **kwargs)
Assert that event was called with kwargs.

assertEventNotCalled(event_name)
Assert that event was not called.

assertFalse(expr, msg=None)
Check that the expression is false.

assertGreater(a, b, msg=None)
Just like self.assertTrue(a > b), but with a nicer default message.

assertGreaterEqual(a, b, msg=None)
Just like self.assertTrue(a >= b), but with a nicer default message.

assertIn(member, container, msg=None)
Just like self.assertTrue(a in b), but with a nicer default message.

assertIs(expr1, expr2, msg=None)
Just like self.assertTrue(a is b), but with a nicer default message.

assertIsInstance(obj, cls, msg=None)
Same as self.assertTrue(isinstance(obj, cls)), with a nicer default message.

assertIsNone(obj, msg=None)
Same as self.assertTrue(obj is None), with a nicer default message.

7.3. API Reference 131

MPF Documentation Developer Documentation, Release 0.33.49

assertIsNot(expr1, expr2, msg=None)
Just like self.assertTrue(a is not b), but with a nicer default message.

assertIsNotNone(obj, msg=None)
Included for symmetry with assertIsNone.

assertLess(a, b, msg=None)
Just like self.assertTrue(a < b), but with a nicer default message.

assertLessEqual(a, b, msg=None)
Just like self.assertTrue(a <= b), but with a nicer default message.

assertListEqual(list1, list2, msg=None)
A list-specific equality assertion.

Parameters

• list1 – The first list to compare.

• list2 – The second list to compare.

• msg – Optional message to use on failure instead of a list of differences.

assertLogs(logger=None, level=None)
Fail unless a log message of level level or higher is emitted on logger_name or its children. If omitted,
level defaults to INFO and logger defaults to the root logger.

This method must be used as a context manager, and will yield a recording object with two attributes:
output and records. At the end of the context manager, the output attribute will be a list of the matching
formatted log messages and the records attribute will be a list of the corresponding LogRecord objects.

Example:

with self.assertLogs('foo', level='INFO') as cm:
logging.getLogger('foo').info('first message')
logging.getLogger('foo.bar').error('second message')

self.assertEqual(cm.output, ['INFO:foo:first message',
'ERROR:foo.bar:second message'])

assertMultiLineEqual(first, second, msg=None)
Assert that two multi-line strings are equal.

assertNotAlmostEqual(first, second, places=None, msg=None, delta=None)
Fail if the two objects are equal as determined by their difference rounded to the given number of decimal
places (default 7) and comparing to zero, or by comparing that the between the two objects is less than the
given delta.

Note that decimal places (from zero) are usually not the same as significant digits (measured from the most
signficant digit).

Objects that are equal automatically fail.

assertNotEqual(first, second, msg=None)
Fail if the two objects are equal as determined by the ’!=’ operator.

assertNotIn(member, container, msg=None)
Just like self.assertTrue(a not in b), but with a nicer default message.

assertNotIsInstance(obj, cls, msg=None)
Included for symmetry with assertIsInstance.

assertNotRegex(text, unexpected_regex, msg=None)
Fail the test if the text matches the regular expression.

132 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.33.49

assertRaises(expected_exception, *args, **kwargs)
Fail unless an exception of class expected_exception is raised by the callable when invoked with specified
positional and keyword arguments. If a different type of exception is raised, it will not be caught, and the
test case will be deemed to have suffered an error, exactly as for an unexpected exception.

If called with the callable and arguments omitted, will return a context object used like this:

with self.assertRaises(SomeException):
do_something()

An optional keyword argument ’msg’ can be provided when assertRaises is used as a context object.

The context manager keeps a reference to the exception as the ’exception’ attribute. This allows you to
inspect the exception after the assertion:

with self.assertRaises(SomeException) as cm:
do_something()

the_exception = cm.exception
self.assertEqual(the_exception.error_code, 3)

assertRaisesRegex(expected_exception, expected_regex, *args, **kwargs)
Asserts that the message in a raised exception matches a regex.

Parameters

• expected_exception – Exception class expected to be raised.

• expected_regex – Regex (re pattern object or string) expected to be found in error
message.

• args – Function to be called and extra positional args.

• kwargs – Extra kwargs.

• msg – Optional message used in case of failure. Can only be used when assertRaisesRegex
is used as a context manager.

assertRegex(text, expected_regex, msg=None)
Fail the test unless the text matches the regular expression.

assertSequenceEqual(seq1, seq2, msg=None, seq_type=None)
An equality assertion for ordered sequences (like lists and tuples).

For the purposes of this function, a valid ordered sequence type is one which can be indexed, has a length,
and has an equality operator.

Parameters

• seq1 – The first sequence to compare.

• seq2 – The second sequence to compare.

• seq_type – The expected datatype of the sequences, or None if no datatype should be
enforced.

• msg – Optional message to use on failure instead of a list of differences.

assertSetEqual(set1, set2, msg=None)
A set-specific equality assertion.

Parameters

• set1 – The first set to compare.

• set2 – The second set to compare.

7.3. API Reference 133

MPF Documentation Developer Documentation, Release 0.33.49

• msg – Optional message to use on failure instead of a list of differences.

assertSetEqual uses ducktyping to support different types of sets, and is optimized for sets specifically
(parameters must support a difference method).

assertShotProfile(shot_name, profile_name)
Assert that the highest priority profile for a shot is a certain profile name.

assertShotProfileState(shot_name, state_name)
Assert that the highest priority profile for a shot is in a certain state.

assertShotShow(shot_name, show_name)
Assert that the highest priority running show for a shot is a certain show name.

assertTrue(expr, msg=None)
Check that the expression is true.

assertTupleEqual(tuple1, tuple2, msg=None)
A tuple-specific equality assertion.

Parameters

• tuple1 – The first tuple to compare.

• tuple2 – The second tuple to compare.

• msg – Optional message to use on failure instead of a list of differences.

assertWarns(expected_warning, *args, **kwargs)
Fail unless a warning of class warnClass is triggered by the callable when invoked with specified positional
and keyword arguments. If a different type of warning is triggered, it will not be handled: depending on
the other warning filtering rules in effect, it might be silenced, printed out, or raised as an exception.

If called with the callable and arguments omitted, will return a context object used like this:

with self.assertWarns(SomeWarning):
do_something()

An optional keyword argument ’msg’ can be provided when assertWarns is used as a context object.

The context manager keeps a reference to the first matching warning as the ’warning’ attribute; similarly,
the ’filename’ and ’lineno’ attributes give you information about the line of Python code from which the
warning was triggered. This allows you to inspect the warning after the assertion:

with self.assertWarns(SomeWarning) as cm:
do_something()

the_warning = cm.warning
self.assertEqual(the_warning.some_attribute, 147)

assertWarnsRegex(expected_warning, expected_regex, *args, **kwargs)
Asserts that the message in a triggered warning matches a regexp. Basic functioning is similar to as-
sertWarns() with the addition that only warnings whose messages also match the regular expression are
considered successful matches.

Parameters

• expected_warning – Warning class expected to be triggered.

• expected_regex – Regex (re pattern object or string) expected to be found in error
message.

• args – Function to be called and extra positional args.

• kwargs – Extra kwargs.

134 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.33.49

• msg – Optional message used in case of failure. Can only be used when assertWarnsRegex
is used as a context manager.

fail(msg=None)
Fail immediately, with the given message.

getConfigFile()
Override this method in your own test class to point to the config file you need for your tests.

getMachinePath()
Override this method in your own test class to point to the machine folder you need for your tests.

Path is related to the MPF package root

shortDescription()
Returns a one-line description of the test, or None if no description has been provided.

The default implementation of this method returns the first line of the specified test method’s docstring.

skipTest(reason)
Skip this test.

unittest_verbosity()
Return the verbosity setting of the currently running unittest program, or 0 if none is running.

MpfFakeGameTestCase

class mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase(methodName)
Bases: mpf.tests.MpfGameTestCase.MpfGameTestCase

Testcase for fake game.

Methods & Attributes

The MpfFakeGameTestCase has the following methods & attributes available. Note that methods & attributes
inherited from the base class are not included here.

assertAlmostEqual(first, second, places=None, msg=None, delta=None)
Fail if the two objects are unequal as determined by their difference rounded to the given number of decimal
places (default 7) and comparing to zero, or by comparing that the between the two objects is more than
the given delta.

Note that decimal places (from zero) are usually not the same as significant digits (measured from the most
signficant digit).

If the two objects compare equal then they will automatically compare almost equal.

assertCountEqual(first, second, msg=None)
An unordered sequence comparison asserting that the same elements, regardless of order. If the same
element occurs more than once, it verifies that the elements occur the same number of times.

self.assertEqual(Counter(list(first)), Counter(list(second)))

Example:

• [0, 1, 1] and [1, 0, 1] compare equal.

• [0, 0, 1] and [0, 1] compare unequal.

7.3. API Reference 135

MPF Documentation Developer Documentation, Release 0.33.49

assertDictContainsSubset(subset, dictionary, msg=None)
Checks whether dictionary is a superset of subset.

assertEqual(first, second, msg=None)
Fail if the two objects are unequal as determined by the ’==’ operator.

assertEventCalled(event_name, times=None)
Assert that event was called.

assertEventCalledWith(event_name, **kwargs)
Assert that event was called with kwargs.

assertEventNotCalled(event_name)
Assert that event was not called.

assertFalse(expr, msg=None)
Check that the expression is false.

assertGreater(a, b, msg=None)
Just like self.assertTrue(a > b), but with a nicer default message.

assertGreaterEqual(a, b, msg=None)
Just like self.assertTrue(a >= b), but with a nicer default message.

assertIn(member, container, msg=None)
Just like self.assertTrue(a in b), but with a nicer default message.

assertIs(expr1, expr2, msg=None)
Just like self.assertTrue(a is b), but with a nicer default message.

assertIsInstance(obj, cls, msg=None)
Same as self.assertTrue(isinstance(obj, cls)), with a nicer default message.

assertIsNone(obj, msg=None)
Same as self.assertTrue(obj is None), with a nicer default message.

assertIsNot(expr1, expr2, msg=None)
Just like self.assertTrue(a is not b), but with a nicer default message.

assertIsNotNone(obj, msg=None)
Included for symmetry with assertIsNone.

assertLess(a, b, msg=None)
Just like self.assertTrue(a < b), but with a nicer default message.

assertLessEqual(a, b, msg=None)
Just like self.assertTrue(a <= b), but with a nicer default message.

assertListEqual(list1, list2, msg=None)
A list-specific equality assertion.

Parameters

• list1 – The first list to compare.

• list2 – The second list to compare.

• msg – Optional message to use on failure instead of a list of differences.

assertLogs(logger=None, level=None)
Fail unless a log message of level level or higher is emitted on logger_name or its children. If omitted,
level defaults to INFO and logger defaults to the root logger.

136 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.33.49

This method must be used as a context manager, and will yield a recording object with two attributes:
output and records. At the end of the context manager, the output attribute will be a list of the matching
formatted log messages and the records attribute will be a list of the corresponding LogRecord objects.

Example:

with self.assertLogs('foo', level='INFO') as cm:
logging.getLogger('foo').info('first message')
logging.getLogger('foo.bar').error('second message')

self.assertEqual(cm.output, ['INFO:foo:first message',
'ERROR:foo.bar:second message'])

assertMultiLineEqual(first, second, msg=None)
Assert that two multi-line strings are equal.

assertNotAlmostEqual(first, second, places=None, msg=None, delta=None)
Fail if the two objects are equal as determined by their difference rounded to the given number of decimal
places (default 7) and comparing to zero, or by comparing that the between the two objects is less than the
given delta.

Note that decimal places (from zero) are usually not the same as significant digits (measured from the most
signficant digit).

Objects that are equal automatically fail.

assertNotEqual(first, second, msg=None)
Fail if the two objects are equal as determined by the ’!=’ operator.

assertNotIn(member, container, msg=None)
Just like self.assertTrue(a not in b), but with a nicer default message.

assertNotIsInstance(obj, cls, msg=None)
Included for symmetry with assertIsInstance.

assertNotRegex(text, unexpected_regex, msg=None)
Fail the test if the text matches the regular expression.

assertRaises(expected_exception, *args, **kwargs)
Fail unless an exception of class expected_exception is raised by the callable when invoked with specified
positional and keyword arguments. If a different type of exception is raised, it will not be caught, and the
test case will be deemed to have suffered an error, exactly as for an unexpected exception.

If called with the callable and arguments omitted, will return a context object used like this:

with self.assertRaises(SomeException):
do_something()

An optional keyword argument ’msg’ can be provided when assertRaises is used as a context object.

The context manager keeps a reference to the exception as the ’exception’ attribute. This allows you to
inspect the exception after the assertion:

with self.assertRaises(SomeException) as cm:
do_something()

the_exception = cm.exception
self.assertEqual(the_exception.error_code, 3)

assertRaisesRegex(expected_exception, expected_regex, *args, **kwargs)
Asserts that the message in a raised exception matches a regex.

Parameters

7.3. API Reference 137

MPF Documentation Developer Documentation, Release 0.33.49

• expected_exception – Exception class expected to be raised.

• expected_regex – Regex (re pattern object or string) expected to be found in error
message.

• args – Function to be called and extra positional args.

• kwargs – Extra kwargs.

• msg – Optional message used in case of failure. Can only be used when assertRaisesRegex
is used as a context manager.

assertRegex(text, expected_regex, msg=None)
Fail the test unless the text matches the regular expression.

assertSequenceEqual(seq1, seq2, msg=None, seq_type=None)
An equality assertion for ordered sequences (like lists and tuples).

For the purposes of this function, a valid ordered sequence type is one which can be indexed, has a length,
and has an equality operator.

Parameters

• seq1 – The first sequence to compare.

• seq2 – The second sequence to compare.

• seq_type – The expected datatype of the sequences, or None if no datatype should be
enforced.

• msg – Optional message to use on failure instead of a list of differences.

assertSetEqual(set1, set2, msg=None)
A set-specific equality assertion.

Parameters

• set1 – The first set to compare.

• set2 – The second set to compare.

• msg – Optional message to use on failure instead of a list of differences.

assertSetEqual uses ducktyping to support different types of sets, and is optimized for sets specifically
(parameters must support a difference method).

assertShotProfile(shot_name, profile_name)
Assert that the highest priority profile for a shot is a certain profile name.

assertShotProfileState(shot_name, state_name)
Assert that the highest priority profile for a shot is in a certain state.

assertShotShow(shot_name, show_name)
Assert that the highest priority running show for a shot is a certain show name.

assertTrue(expr, msg=None)
Check that the expression is true.

assertTupleEqual(tuple1, tuple2, msg=None)
A tuple-specific equality assertion.

Parameters

• tuple1 – The first tuple to compare.

• tuple2 – The second tuple to compare.

138 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.33.49

• msg – Optional message to use on failure instead of a list of differences.

assertWarns(expected_warning, *args, **kwargs)
Fail unless a warning of class warnClass is triggered by the callable when invoked with specified positional
and keyword arguments. If a different type of warning is triggered, it will not be handled: depending on
the other warning filtering rules in effect, it might be silenced, printed out, or raised as an exception.

If called with the callable and arguments omitted, will return a context object used like this:

with self.assertWarns(SomeWarning):
do_something()

An optional keyword argument ’msg’ can be provided when assertWarns is used as a context object.

The context manager keeps a reference to the first matching warning as the ’warning’ attribute; similarly,
the ’filename’ and ’lineno’ attributes give you information about the line of Python code from which the
warning was triggered. This allows you to inspect the warning after the assertion:

with self.assertWarns(SomeWarning) as cm:
do_something()

the_warning = cm.warning
self.assertEqual(the_warning.some_attribute, 147)

assertWarnsRegex(expected_warning, expected_regex, *args, **kwargs)
Asserts that the message in a triggered warning matches a regexp. Basic functioning is similar to as-
sertWarns() with the addition that only warnings whose messages also match the regular expression are
considered successful matches.

Parameters

• expected_warning – Warning class expected to be triggered.

• expected_regex – Regex (re pattern object or string) expected to be found in error
message.

• args – Function to be called and extra positional args.

• kwargs – Extra kwargs.

• msg – Optional message used in case of failure. Can only be used when assertWarnsRegex
is used as a context manager.

fail(msg=None)
Fail immediately, with the given message.

fill_troughs()
Fill all troughs.

getConfigFile()
Override this method in your own test class to point to the config file you need for your tests.

getMachinePath()
Override this method in your own test class to point to the machine folder you need for your tests.

Path is related to the MPF package root

shortDescription()
Returns a one-line description of the test, or None if no description has been provided.

The default implementation of this method returns the first line of the specified test method’s docstring.

skipTest(reason)
Skip this test.

7.3. API Reference 139

MPF Documentation Developer Documentation, Release 0.33.49

start_two_player_game()
Start two player game.

unittest_verbosity()
Return the verbosity setting of the currently running unittest program, or 0 if none is running.

MpfGameTestCase

class mpf.tests.MpfGameTestCase.MpfGameTestCase(methodName)
Bases: mpf.tests.MpfTestCase.MpfTestCase

Testcase for games.

Methods & Attributes

The MpfGameTestCase has the following methods & attributes available. Note that methods & attributes inher-
ited from the base class are not included here.

assertAlmostEqual(first, second, places=None, msg=None, delta=None)
Fail if the two objects are unequal as determined by their difference rounded to the given number of decimal
places (default 7) and comparing to zero, or by comparing that the between the two objects is more than
the given delta.

Note that decimal places (from zero) are usually not the same as significant digits (measured from the most
signficant digit).

If the two objects compare equal then they will automatically compare almost equal.

assertCountEqual(first, second, msg=None)
An unordered sequence comparison asserting that the same elements, regardless of order. If the same
element occurs more than once, it verifies that the elements occur the same number of times.

self.assertEqual(Counter(list(first)), Counter(list(second)))

Example:

• [0, 1, 1] and [1, 0, 1] compare equal.

• [0, 0, 1] and [0, 1] compare unequal.

assertDictContainsSubset(subset, dictionary, msg=None)
Checks whether dictionary is a superset of subset.

assertEqual(first, second, msg=None)
Fail if the two objects are unequal as determined by the ’==’ operator.

assertEventCalled(event_name, times=None)
Assert that event was called.

assertEventCalledWith(event_name, **kwargs)
Assert that event was called with kwargs.

assertEventNotCalled(event_name)
Assert that event was not called.

assertFalse(expr, msg=None)
Check that the expression is false.

assertGreater(a, b, msg=None)
Just like self.assertTrue(a > b), but with a nicer default message.

140 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.33.49

assertGreaterEqual(a, b, msg=None)
Just like self.assertTrue(a >= b), but with a nicer default message.

assertIn(member, container, msg=None)
Just like self.assertTrue(a in b), but with a nicer default message.

assertIs(expr1, expr2, msg=None)
Just like self.assertTrue(a is b), but with a nicer default message.

assertIsInstance(obj, cls, msg=None)
Same as self.assertTrue(isinstance(obj, cls)), with a nicer default message.

assertIsNone(obj, msg=None)
Same as self.assertTrue(obj is None), with a nicer default message.

assertIsNot(expr1, expr2, msg=None)
Just like self.assertTrue(a is not b), but with a nicer default message.

assertIsNotNone(obj, msg=None)
Included for symmetry with assertIsNone.

assertLess(a, b, msg=None)
Just like self.assertTrue(a < b), but with a nicer default message.

assertLessEqual(a, b, msg=None)
Just like self.assertTrue(a <= b), but with a nicer default message.

assertListEqual(list1, list2, msg=None)
A list-specific equality assertion.

Parameters

• list1 – The first list to compare.

• list2 – The second list to compare.

• msg – Optional message to use on failure instead of a list of differences.

assertLogs(logger=None, level=None)
Fail unless a log message of level level or higher is emitted on logger_name or its children. If omitted,
level defaults to INFO and logger defaults to the root logger.

This method must be used as a context manager, and will yield a recording object with two attributes:
output and records. At the end of the context manager, the output attribute will be a list of the matching
formatted log messages and the records attribute will be a list of the corresponding LogRecord objects.

Example:

with self.assertLogs('foo', level='INFO') as cm:
logging.getLogger('foo').info('first message')
logging.getLogger('foo.bar').error('second message')

self.assertEqual(cm.output, ['INFO:foo:first message',
'ERROR:foo.bar:second message'])

assertMultiLineEqual(first, second, msg=None)
Assert that two multi-line strings are equal.

assertNotAlmostEqual(first, second, places=None, msg=None, delta=None)
Fail if the two objects are equal as determined by their difference rounded to the given number of decimal
places (default 7) and comparing to zero, or by comparing that the between the two objects is less than the
given delta.

Note that decimal places (from zero) are usually not the same as significant digits (measured from the most
signficant digit).

7.3. API Reference 141

MPF Documentation Developer Documentation, Release 0.33.49

Objects that are equal automatically fail.

assertNotEqual(first, second, msg=None)
Fail if the two objects are equal as determined by the ’!=’ operator.

assertNotIn(member, container, msg=None)
Just like self.assertTrue(a not in b), but with a nicer default message.

assertNotIsInstance(obj, cls, msg=None)
Included for symmetry with assertIsInstance.

assertNotRegex(text, unexpected_regex, msg=None)
Fail the test if the text matches the regular expression.

assertRaises(expected_exception, *args, **kwargs)
Fail unless an exception of class expected_exception is raised by the callable when invoked with specified
positional and keyword arguments. If a different type of exception is raised, it will not be caught, and the
test case will be deemed to have suffered an error, exactly as for an unexpected exception.

If called with the callable and arguments omitted, will return a context object used like this:

with self.assertRaises(SomeException):
do_something()

An optional keyword argument ’msg’ can be provided when assertRaises is used as a context object.

The context manager keeps a reference to the exception as the ’exception’ attribute. This allows you to
inspect the exception after the assertion:

with self.assertRaises(SomeException) as cm:
do_something()

the_exception = cm.exception
self.assertEqual(the_exception.error_code, 3)

assertRaisesRegex(expected_exception, expected_regex, *args, **kwargs)
Asserts that the message in a raised exception matches a regex.

Parameters

• expected_exception – Exception class expected to be raised.

• expected_regex – Regex (re pattern object or string) expected to be found in error
message.

• args – Function to be called and extra positional args.

• kwargs – Extra kwargs.

• msg – Optional message used in case of failure. Can only be used when assertRaisesRegex
is used as a context manager.

assertRegex(text, expected_regex, msg=None)
Fail the test unless the text matches the regular expression.

assertSequenceEqual(seq1, seq2, msg=None, seq_type=None)
An equality assertion for ordered sequences (like lists and tuples).

For the purposes of this function, a valid ordered sequence type is one which can be indexed, has a length,
and has an equality operator.

Parameters

• seq1 – The first sequence to compare.

142 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.33.49

• seq2 – The second sequence to compare.

• seq_type – The expected datatype of the sequences, or None if no datatype should be
enforced.

• msg – Optional message to use on failure instead of a list of differences.

assertSetEqual(set1, set2, msg=None)
A set-specific equality assertion.

Parameters

• set1 – The first set to compare.

• set2 – The second set to compare.

• msg – Optional message to use on failure instead of a list of differences.

assertSetEqual uses ducktyping to support different types of sets, and is optimized for sets specifically
(parameters must support a difference method).

assertShotProfile(shot_name, profile_name)
Assert that the highest priority profile for a shot is a certain profile name.

assertShotProfileState(shot_name, state_name)
Assert that the highest priority profile for a shot is in a certain state.

assertShotShow(shot_name, show_name)
Assert that the highest priority running show for a shot is a certain show name.

assertTrue(expr, msg=None)
Check that the expression is true.

assertTupleEqual(tuple1, tuple2, msg=None)
A tuple-specific equality assertion.

Parameters

• tuple1 – The first tuple to compare.

• tuple2 – The second tuple to compare.

• msg – Optional message to use on failure instead of a list of differences.

assertWarns(expected_warning, *args, **kwargs)
Fail unless a warning of class warnClass is triggered by the callable when invoked with specified positional
and keyword arguments. If a different type of warning is triggered, it will not be handled: depending on
the other warning filtering rules in effect, it might be silenced, printed out, or raised as an exception.

If called with the callable and arguments omitted, will return a context object used like this:

with self.assertWarns(SomeWarning):
do_something()

An optional keyword argument ’msg’ can be provided when assertWarns is used as a context object.

The context manager keeps a reference to the first matching warning as the ’warning’ attribute; similarly,
the ’filename’ and ’lineno’ attributes give you information about the line of Python code from which the
warning was triggered. This allows you to inspect the warning after the assertion:

with self.assertWarns(SomeWarning) as cm:
do_something()

the_warning = cm.warning
self.assertEqual(the_warning.some_attribute, 147)

7.3. API Reference 143

MPF Documentation Developer Documentation, Release 0.33.49

assertWarnsRegex(expected_warning, expected_regex, *args, **kwargs)
Asserts that the message in a triggered warning matches a regexp. Basic functioning is similar to as-
sertWarns() with the addition that only warnings whose messages also match the regular expression are
considered successful matches.

Parameters

• expected_warning – Warning class expected to be triggered.

• expected_regex – Regex (re pattern object or string) expected to be found in error
message.

• args – Function to be called and extra positional args.

• kwargs – Extra kwargs.

• msg – Optional message used in case of failure. Can only be used when assertWarnsRegex
is used as a context manager.

fail(msg=None)
Fail immediately, with the given message.

fill_troughs()
Fill all troughs.

getConfigFile()
Override this method in your own test class to point to the config file you need for your tests.

getMachinePath()
Override this method in your own test class to point to the machine folder you need for your tests.

Path is related to the MPF package root

shortDescription()
Returns a one-line description of the test, or None if no description has been provided.

The default implementation of this method returns the first line of the specified test method’s docstring.

skipTest(reason)
Skip this test.

start_two_player_game()
Start two player game.

unittest_verbosity()
Return the verbosity setting of the currently running unittest program, or 0 if none is running.

MpfMachineTestCase

class mpf.tests.MpfMachineTestCase.MpfMachineTestCase(methodName=’runTest’)
Bases: mpf.tests.MpfMachineTestCase.BaseMpfMachineTestCase

MPF only machine test case.

Methods & Attributes

The MpfMachineTestCase has the following methods & attributes available. Note that methods & attributes
inherited from the base class are not included here.

144 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.33.49

assertAlmostEqual(first, second, places=None, msg=None, delta=None)
Fail if the two objects are unequal as determined by their difference rounded to the given number of decimal
places (default 7) and comparing to zero, or by comparing that the between the two objects is more than
the given delta.

Note that decimal places (from zero) are usually not the same as significant digits (measured from the most
signficant digit).

If the two objects compare equal then they will automatically compare almost equal.

assertCountEqual(first, second, msg=None)
An unordered sequence comparison asserting that the same elements, regardless of order. If the same
element occurs more than once, it verifies that the elements occur the same number of times.

self.assertEqual(Counter(list(first)), Counter(list(second)))

Example:

• [0, 1, 1] and [1, 0, 1] compare equal.

• [0, 0, 1] and [0, 1] compare unequal.

assertDictContainsSubset(subset, dictionary, msg=None)
Checks whether dictionary is a superset of subset.

assertEqual(first, second, msg=None)
Fail if the two objects are unequal as determined by the ’==’ operator.

assertEventCalled(event_name, times=None)
Assert that event was called.

assertEventCalledWith(event_name, **kwargs)
Assert that event was called with kwargs.

assertEventNotCalled(event_name)
Assert that event was not called.

assertFalse(expr, msg=None)
Check that the expression is false.

assertGreater(a, b, msg=None)
Just like self.assertTrue(a > b), but with a nicer default message.

assertGreaterEqual(a, b, msg=None)
Just like self.assertTrue(a >= b), but with a nicer default message.

assertIn(member, container, msg=None)
Just like self.assertTrue(a in b), but with a nicer default message.

assertIs(expr1, expr2, msg=None)
Just like self.assertTrue(a is b), but with a nicer default message.

assertIsInstance(obj, cls, msg=None)
Same as self.assertTrue(isinstance(obj, cls)), with a nicer default message.

assertIsNone(obj, msg=None)
Same as self.assertTrue(obj is None), with a nicer default message.

assertIsNot(expr1, expr2, msg=None)
Just like self.assertTrue(a is not b), but with a nicer default message.

assertIsNotNone(obj, msg=None)
Included for symmetry with assertIsNone.

7.3. API Reference 145

MPF Documentation Developer Documentation, Release 0.33.49

assertLess(a, b, msg=None)
Just like self.assertTrue(a < b), but with a nicer default message.

assertLessEqual(a, b, msg=None)
Just like self.assertTrue(a <= b), but with a nicer default message.

assertListEqual(list1, list2, msg=None)
A list-specific equality assertion.

Parameters

• list1 – The first list to compare.

• list2 – The second list to compare.

• msg – Optional message to use on failure instead of a list of differences.

assertLogs(logger=None, level=None)
Fail unless a log message of level level or higher is emitted on logger_name or its children. If omitted,
level defaults to INFO and logger defaults to the root logger.

This method must be used as a context manager, and will yield a recording object with two attributes:
output and records. At the end of the context manager, the output attribute will be a list of the matching
formatted log messages and the records attribute will be a list of the corresponding LogRecord objects.

Example:

with self.assertLogs('foo', level='INFO') as cm:
logging.getLogger('foo').info('first message')
logging.getLogger('foo.bar').error('second message')

self.assertEqual(cm.output, ['INFO:foo:first message',
'ERROR:foo.bar:second message'])

assertMultiLineEqual(first, second, msg=None)
Assert that two multi-line strings are equal.

assertNotAlmostEqual(first, second, places=None, msg=None, delta=None)
Fail if the two objects are equal as determined by their difference rounded to the given number of decimal
places (default 7) and comparing to zero, or by comparing that the between the two objects is less than the
given delta.

Note that decimal places (from zero) are usually not the same as significant digits (measured from the most
signficant digit).

Objects that are equal automatically fail.

assertNotEqual(first, second, msg=None)
Fail if the two objects are equal as determined by the ’!=’ operator.

assertNotIn(member, container, msg=None)
Just like self.assertTrue(a not in b), but with a nicer default message.

assertNotIsInstance(obj, cls, msg=None)
Included for symmetry with assertIsInstance.

assertNotRegex(text, unexpected_regex, msg=None)
Fail the test if the text matches the regular expression.

assertRaises(expected_exception, *args, **kwargs)
Fail unless an exception of class expected_exception is raised by the callable when invoked with specified
positional and keyword arguments. If a different type of exception is raised, it will not be caught, and the
test case will be deemed to have suffered an error, exactly as for an unexpected exception.

If called with the callable and arguments omitted, will return a context object used like this:

146 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.33.49

with self.assertRaises(SomeException):
do_something()

An optional keyword argument ’msg’ can be provided when assertRaises is used as a context object.

The context manager keeps a reference to the exception as the ’exception’ attribute. This allows you to
inspect the exception after the assertion:

with self.assertRaises(SomeException) as cm:
do_something()

the_exception = cm.exception
self.assertEqual(the_exception.error_code, 3)

assertRaisesRegex(expected_exception, expected_regex, *args, **kwargs)
Asserts that the message in a raised exception matches a regex.

Parameters

• expected_exception – Exception class expected to be raised.

• expected_regex – Regex (re pattern object or string) expected to be found in error
message.

• args – Function to be called and extra positional args.

• kwargs – Extra kwargs.

• msg – Optional message used in case of failure. Can only be used when assertRaisesRegex
is used as a context manager.

assertRegex(text, expected_regex, msg=None)
Fail the test unless the text matches the regular expression.

assertSequenceEqual(seq1, seq2, msg=None, seq_type=None)
An equality assertion for ordered sequences (like lists and tuples).

For the purposes of this function, a valid ordered sequence type is one which can be indexed, has a length,
and has an equality operator.

Parameters

• seq1 – The first sequence to compare.

• seq2 – The second sequence to compare.

• seq_type – The expected datatype of the sequences, or None if no datatype should be
enforced.

• msg – Optional message to use on failure instead of a list of differences.

assertSetEqual(set1, set2, msg=None)
A set-specific equality assertion.

Parameters

• set1 – The first set to compare.

• set2 – The second set to compare.

• msg – Optional message to use on failure instead of a list of differences.

assertSetEqual uses ducktyping to support different types of sets, and is optimized for sets specifically
(parameters must support a difference method).

7.3. API Reference 147

MPF Documentation Developer Documentation, Release 0.33.49

assertShotProfile(shot_name, profile_name)
Assert that the highest priority profile for a shot is a certain profile name.

assertShotProfileState(shot_name, state_name)
Assert that the highest priority profile for a shot is in a certain state.

assertShotShow(shot_name, show_name)
Assert that the highest priority running show for a shot is a certain show name.

assertTrue(expr, msg=None)
Check that the expression is true.

assertTupleEqual(tuple1, tuple2, msg=None)
A tuple-specific equality assertion.

Parameters

• tuple1 – The first tuple to compare.

• tuple2 – The second tuple to compare.

• msg – Optional message to use on failure instead of a list of differences.

assertWarns(expected_warning, *args, **kwargs)
Fail unless a warning of class warnClass is triggered by the callable when invoked with specified positional
and keyword arguments. If a different type of warning is triggered, it will not be handled: depending on
the other warning filtering rules in effect, it might be silenced, printed out, or raised as an exception.

If called with the callable and arguments omitted, will return a context object used like this:

with self.assertWarns(SomeWarning):
do_something()

An optional keyword argument ’msg’ can be provided when assertWarns is used as a context object.

The context manager keeps a reference to the first matching warning as the ’warning’ attribute; similarly,
the ’filename’ and ’lineno’ attributes give you information about the line of Python code from which the
warning was triggered. This allows you to inspect the warning after the assertion:

with self.assertWarns(SomeWarning) as cm:
do_something()

the_warning = cm.warning
self.assertEqual(the_warning.some_attribute, 147)

assertWarnsRegex(expected_warning, expected_regex, *args, **kwargs)
Asserts that the message in a triggered warning matches a regexp. Basic functioning is similar to as-
sertWarns() with the addition that only warnings whose messages also match the regular expression are
considered successful matches.

Parameters

• expected_warning – Warning class expected to be triggered.

• expected_regex – Regex (re pattern object or string) expected to be found in error
message.

• args – Function to be called and extra positional args.

• kwargs – Extra kwargs.

• msg – Optional message used in case of failure. Can only be used when assertWarnsRegex
is used as a context manager.

148 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.33.49

fail(msg=None)
Fail immediately, with the given message.

shortDescription()
Returns a one-line description of the test, or None if no description has been provided.

The default implementation of this method returns the first line of the specified test method’s docstring.

skipTest(reason)
Skip this test.

unittest_verbosity()
Return the verbosity setting of the currently running unittest program, or 0 if none is running.

MpfTestCase

class mpf.tests.MpfTestCase.MpfTestCase(methodName=’runTest’)
Bases: unittest.case.TestCase

Methods & Attributes

The MpfTestCase has the following methods & attributes available. Note that methods & attributes inherited
from the base class are not included here.

assertAlmostEqual(first, second, places=None, msg=None, delta=None)
Fail if the two objects are unequal as determined by their difference rounded to the given number of decimal
places (default 7) and comparing to zero, or by comparing that the between the two objects is more than
the given delta.

Note that decimal places (from zero) are usually not the same as significant digits (measured from the most
signficant digit).

If the two objects compare equal then they will automatically compare almost equal.

assertCountEqual(first, second, msg=None)
An unordered sequence comparison asserting that the same elements, regardless of order. If the same
element occurs more than once, it verifies that the elements occur the same number of times.

self.assertEqual(Counter(list(first)), Counter(list(second)))

Example:

• [0, 1, 1] and [1, 0, 1] compare equal.

• [0, 0, 1] and [0, 1] compare unequal.

assertDictContainsSubset(subset, dictionary, msg=None)
Checks whether dictionary is a superset of subset.

assertEqual(first, second, msg=None)
Fail if the two objects are unequal as determined by the ’==’ operator.

assertEventCalled(event_name, times=None)
Assert that event was called.

assertEventCalledWith(event_name, **kwargs)
Assert that event was called with kwargs.

assertEventNotCalled(event_name)
Assert that event was not called.

7.3. API Reference 149

MPF Documentation Developer Documentation, Release 0.33.49

assertFalse(expr, msg=None)
Check that the expression is false.

assertGreater(a, b, msg=None)
Just like self.assertTrue(a > b), but with a nicer default message.

assertGreaterEqual(a, b, msg=None)
Just like self.assertTrue(a >= b), but with a nicer default message.

assertIn(member, container, msg=None)
Just like self.assertTrue(a in b), but with a nicer default message.

assertIs(expr1, expr2, msg=None)
Just like self.assertTrue(a is b), but with a nicer default message.

assertIsInstance(obj, cls, msg=None)
Same as self.assertTrue(isinstance(obj, cls)), with a nicer default message.

assertIsNone(obj, msg=None)
Same as self.assertTrue(obj is None), with a nicer default message.

assertIsNot(expr1, expr2, msg=None)
Just like self.assertTrue(a is not b), but with a nicer default message.

assertIsNotNone(obj, msg=None)
Included for symmetry with assertIsNone.

assertLess(a, b, msg=None)
Just like self.assertTrue(a < b), but with a nicer default message.

assertLessEqual(a, b, msg=None)
Just like self.assertTrue(a <= b), but with a nicer default message.

assertListEqual(list1, list2, msg=None)
A list-specific equality assertion.

Parameters

• list1 – The first list to compare.

• list2 – The second list to compare.

• msg – Optional message to use on failure instead of a list of differences.

assertLogs(logger=None, level=None)
Fail unless a log message of level level or higher is emitted on logger_name or its children. If omitted,
level defaults to INFO and logger defaults to the root logger.

This method must be used as a context manager, and will yield a recording object with two attributes:
output and records. At the end of the context manager, the output attribute will be a list of the matching
formatted log messages and the records attribute will be a list of the corresponding LogRecord objects.

Example:

with self.assertLogs('foo', level='INFO') as cm:
logging.getLogger('foo').info('first message')
logging.getLogger('foo.bar').error('second message')

self.assertEqual(cm.output, ['INFO:foo:first message',
'ERROR:foo.bar:second message'])

assertMultiLineEqual(first, second, msg=None)
Assert that two multi-line strings are equal.

150 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.33.49

assertNotAlmostEqual(first, second, places=None, msg=None, delta=None)
Fail if the two objects are equal as determined by their difference rounded to the given number of decimal
places (default 7) and comparing to zero, or by comparing that the between the two objects is less than the
given delta.

Note that decimal places (from zero) are usually not the same as significant digits (measured from the most
signficant digit).

Objects that are equal automatically fail.

assertNotEqual(first, second, msg=None)
Fail if the two objects are equal as determined by the ’!=’ operator.

assertNotIn(member, container, msg=None)
Just like self.assertTrue(a not in b), but with a nicer default message.

assertNotIsInstance(obj, cls, msg=None)
Included for symmetry with assertIsInstance.

assertNotRegex(text, unexpected_regex, msg=None)
Fail the test if the text matches the regular expression.

assertRaises(expected_exception, *args, **kwargs)
Fail unless an exception of class expected_exception is raised by the callable when invoked with specified
positional and keyword arguments. If a different type of exception is raised, it will not be caught, and the
test case will be deemed to have suffered an error, exactly as for an unexpected exception.

If called with the callable and arguments omitted, will return a context object used like this:

with self.assertRaises(SomeException):
do_something()

An optional keyword argument ’msg’ can be provided when assertRaises is used as a context object.

The context manager keeps a reference to the exception as the ’exception’ attribute. This allows you to
inspect the exception after the assertion:

with self.assertRaises(SomeException) as cm:
do_something()

the_exception = cm.exception
self.assertEqual(the_exception.error_code, 3)

assertRaisesRegex(expected_exception, expected_regex, *args, **kwargs)
Asserts that the message in a raised exception matches a regex.

Parameters

• expected_exception – Exception class expected to be raised.

• expected_regex – Regex (re pattern object or string) expected to be found in error
message.

• args – Function to be called and extra positional args.

• kwargs – Extra kwargs.

• msg – Optional message used in case of failure. Can only be used when assertRaisesRegex
is used as a context manager.

assertRegex(text, expected_regex, msg=None)
Fail the test unless the text matches the regular expression.

7.3. API Reference 151

MPF Documentation Developer Documentation, Release 0.33.49

assertSequenceEqual(seq1, seq2, msg=None, seq_type=None)
An equality assertion for ordered sequences (like lists and tuples).

For the purposes of this function, a valid ordered sequence type is one which can be indexed, has a length,
and has an equality operator.

Parameters

• seq1 – The first sequence to compare.

• seq2 – The second sequence to compare.

• seq_type – The expected datatype of the sequences, or None if no datatype should be
enforced.

• msg – Optional message to use on failure instead of a list of differences.

assertSetEqual(set1, set2, msg=None)
A set-specific equality assertion.

Parameters

• set1 – The first set to compare.

• set2 – The second set to compare.

• msg – Optional message to use on failure instead of a list of differences.

assertSetEqual uses ducktyping to support different types of sets, and is optimized for sets specifically
(parameters must support a difference method).

assertShotProfile(shot_name, profile_name)
Assert that the highest priority profile for a shot is a certain profile name.

assertShotProfileState(shot_name, state_name)
Assert that the highest priority profile for a shot is in a certain state.

assertShotShow(shot_name, show_name)
Assert that the highest priority running show for a shot is a certain show name.

assertTrue(expr, msg=None)
Check that the expression is true.

assertTupleEqual(tuple1, tuple2, msg=None)
A tuple-specific equality assertion.

Parameters

• tuple1 – The first tuple to compare.

• tuple2 – The second tuple to compare.

• msg – Optional message to use on failure instead of a list of differences.

assertWarns(expected_warning, *args, **kwargs)
Fail unless a warning of class warnClass is triggered by the callable when invoked with specified positional
and keyword arguments. If a different type of warning is triggered, it will not be handled: depending on
the other warning filtering rules in effect, it might be silenced, printed out, or raised as an exception.

If called with the callable and arguments omitted, will return a context object used like this:

with self.assertWarns(SomeWarning):
do_something()

152 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.33.49

An optional keyword argument ’msg’ can be provided when assertWarns is used as a context object.

The context manager keeps a reference to the first matching warning as the ’warning’ attribute; similarly,
the ’filename’ and ’lineno’ attributes give you information about the line of Python code from which the
warning was triggered. This allows you to inspect the warning after the assertion:

with self.assertWarns(SomeWarning) as cm:
do_something()

the_warning = cm.warning
self.assertEqual(the_warning.some_attribute, 147)

assertWarnsRegex(expected_warning, expected_regex, *args, **kwargs)
Asserts that the message in a triggered warning matches a regexp. Basic functioning is similar to as-
sertWarns() with the addition that only warnings whose messages also match the regular expression are
considered successful matches.

Parameters

• expected_warning – Warning class expected to be triggered.

• expected_regex – Regex (re pattern object or string) expected to be found in error
message.

• args – Function to be called and extra positional args.

• kwargs – Extra kwargs.

• msg – Optional message used in case of failure. Can only be used when assertWarnsRegex
is used as a context manager.

fail(msg=None)
Fail immediately, with the given message.

getConfigFile()
Override this method in your own test class to point to the config file you need for your tests.

getMachinePath()
Override this method in your own test class to point to the machine folder you need for your tests.

Path is related to the MPF package root

shortDescription()
Returns a one-line description of the test, or None if no description has been provided.

The default implementation of this method returns the first line of the specified test method’s docstring.

skipTest(reason)
Skip this test.

unittest_verbosity()
Return the verbosity setting of the currently running unittest program, or 0 if none is running.

TestDataManager

class mpf.tests.TestDataManager.TestDataManager(data)
Bases: mpf.core.data_manager.DataManager

7.3. API Reference 153

MPF Documentation Developer Documentation, Release 0.33.49

Methods & Attributes

The TestDataManager has the following methods & attributes available. Note that methods & attributes inherited
from the base class are not included here.

get_data(section=None)
Return the value of this DataManager’s data.

Parameters section – Optional string name of a section (dictionary key) for the data you
want returned. Default is None which returns the entire dictionary.

remove_key(key)
Remove key by name.

save_key(key, value, delay_secs=0)
Update an individual key and then write the entire dictionary to disk.

Parameters

• key – String name of the key to add/update.

• value – Value of the key

• delay_secs – Optional number of seconds to wait before writing the data to disk. De-
fault is 0.

warning_log(msg, *args, **kwargs)
Log a message at the warning level.

These messages will always be shown in the console and the log file.

TestMachineController

class mpf.tests.MpfTestCase.TestMachineController(mpf_path, machine_path, options,
config_patches, clock, mock_data,
enable_plugins=False)

Bases: mpf.core.machine.MachineController

MachineController used in tests.

Methods & Attributes

The TestMachineController has the following methods & attributes available. Note that methods & attributes
inherited from the base class are not included here.

add_platform(name)
Make an additional hardware platform interface available to MPF.

Parameters name – String name of the platform to add. Must match the name of a platform file
in the mpf/platforms folder (without the .py extension).

clear_boot_hold(hold)
Clear a boot hold.

create_machine_var(name, value=0, persist=False, expire_secs=None, silent=False)
Create a new machine variable.

Parameters

• name – String name of the variable.

154 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.33.49

• value – The value of the variable. This can be any Type.

• persist – Boolean as to whether this variable should be saved to disk so it’s available
the next time MPF boots.

• expire_secs – Optional number of seconds you’d like this variable to persist on disk
for. When MPF boots, if the expiration time of the variable is in the past, it will be loaded
with a value of 0. For example, this lets you write the number of credits on the machine to
disk to persist even during power off, but you could set it so that those only stay persisted
for an hour.

get_machine_var(name)
Return the value of a machine variable.

Parameters name – String name of the variable you want to get that value for.

Returns The value of the variable if it exists, or None if the variable does not exist.

get_platform_sections(platform_section, overwrite)
Return platform section.

init_done()
Finish init.

Called when init is done and all boot holds are cleared.

is_machine_var(name)
Return true if machine variable exists.

power_off(**kwargs)
Attempt to perform a power down of the pinball machine and ends MPF.

This method is not yet implemented.

register_boot_hold(hold)
Register a boot hold.

register_monitor(monitor_class, monitor)
Register a monitor.

Parameters

• monitor_class – String name of the monitor class for this monitor that’s being regis-
tered.

• monitor – String name of the monitor.

MPF uses monitors to allow components to monitor certain internal elements of MPF.

For example, a player variable monitor could be setup to be notified of any changes to a player variable, or
a switch monitor could be used to allow a plugin to be notified of any changes to any switches.

The MachineController’s list of registered monitors doesn’t actually do anything. Rather it’s a dictionary
of sets which the monitors themselves can reference when they need to do something. We just needed a
central registry of monitors.

remove_machine_var(name)
Remove a machine variable by name.

If this variable persists to disk, it will remove it from there too.

Parameters name – String name of the variable you want to remove.

remove_machine_var_search(startswith=”, endswith=”)
Remove a machine variable by matching parts of its name.

7.3. API Reference 155

MPF Documentation Developer Documentation, Release 0.33.49

Parameters

• startswith – Optional start of the variable name to match.

• endswith – Optional end of the variable name to match.

For example, if you pass startswit=’player’ and endswith=’score’, this method will match and remove
player1_score, player2_score, etc.

reset()
Reset the machine.

This method is safe to call. It essentially sets up everything from scratch without reloading the config files
and assets from disk. This method is called after a game ends and before attract mode begins.

run()
Start the main machine run loop.

set_default_platform(name)
Set the default platform.

It is used if a device class-specific or device-specific platform is not specified.

Parameters name – String name of the platform to set to default.

set_machine_var(name, value, force_events=False)
Set the value of a machine variable.

Parameters

• name – String name of the variable you’re setting the value for.

• value – The value you’re setting. This can be any Type.

• force_events – Boolean which will force the event posting, the machine monitor
callback, and writing the variable to disk (if it’s set to persist). By default these things
only happen if the new value is different from the old value.

stop(**kwargs)
Perform a graceful exit of MPF.

validate_machine_config_section(section)
Validate a config section.

verify_system_info()
Dump information about the Python installation to the log.

Information includes Python version, Python executable, platform, and core architecture.

warning_log(msg, *args, **kwargs)
Log a message at the warning level.

These messages will always be shown in the console and the log file.

7.3.7 Miscellaneous Components

There are several other components and systems of MPF that don’t fit into any of the other categories. Those are
covered here.

156 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.33.49

Ball Search

class mpf.core.ball_search.BallSearch(machine, playfield)
Bases: mpf.core.mpf_controller.MpfController

Ball search controller.

Methods & Attributes

The Ball Search has the following methods & attributes available. Note that methods & attributes inherited from
the base class are not included here.

block(**kwargs)
Block ball search for this playfield.

Blocking will disable ball search if it’s enabled or running, and will prevent ball search from enabling if
it’s disabled until ball_search_unblock() is called.

cancel_ball_search(**kwargs)
Cancel the current ball search and mark the ball as missing.

configure_logging(logger, console_level=’basic’, file_level=’basic’)
Configure the logging for the module this class is mixed into.

Parameters

• logger – The string name of the logger to use

• console_level – The level of logging for the console. Valid options are "none", "ba-
sic", or "full".

• file_level – The level of logging for the console. Valid options are "none", "basic",
or "full".

debug_log(msg, *args, **kwargs)
Log a message at the debug level.

Note that whether this message shows up in the console or log file is controlled by the settings used with
configure_logging().

disable(**kwargs)
Disable ball search.

Will stop the ball search if it is running.

enable(**kwargs)
Enable but do not start ball search.

Ball search is started by a timeout. Enable also resets that timer.

error_log(msg, *args, **kwargs)
Log a message at the error level.

These messages will always be shown in the console and the log file.

give_up()
Give up the ball search.

Did not find the missing ball. Execute the failed action which either adds a replacement ball or ends the
game.

7.3. API Reference 157

MPF Documentation Developer Documentation, Release 0.33.49

info_log(msg, *args, **kwargs)
Log a message at the info level.

Whether this message shows up in the console or log file is controlled by the settings used with config-
ure_logging().

register(priority, callback, name)
Register a callback for sequential ball search.

Callbacks are called by priority. Ball search only waits if the callback returns true.

Parameters

• priority – priority of this callback in the ball search procedure

• callback – callback to call. ball search will wait before the next callback, if it returns
true

• name – string name which is used for debugging & the logs

request_to_start_game(**kwargs)
Method registered for the request_to_start_game event.

Prevents the game from starting while ball search is running.

reset_timer()
Reset the timer to start ball search.

This also cancels an active running ball search.

This is called by the playfield anytime a playfield switch is hit.

start()
Actually start ball search.

stop()
Stop an active running ball search.

unblock(**kwargs)
Unblock ball search for this playfield.

This will check to see if there are balls on the playfield, and if so, enable ball search.

warning_log(msg, *args, **kwargs)
Log a message at the warning level.

These messages will always be shown in the console and the log file.

File Manager

class mpf.core.file_manager.FileManager
Bases: object

Manages file interfaces.

Methods & Attributes

The File Manager has the following methods & attributes available. Note that methods & attributes inherited
from the base class are not included here.

static get_file_interface(filename)
Return a file interface.

158 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.33.49

classmethod init()
Initialise file manager.

static load(filename, verify_version=False, halt_on_error=True, round_trip=False)
Load a file by name.

static locate_file(filename)→ str
Find a file location.

Parameters filename – Filename to locate

Returns: Location of file

static save(filename, data, **kwargs)
Save data to file.

LogMixin

class mpf.core.logging.LogMixin
Bases: object

Mixin class to add smart logging functionality to modules.

Methods & Attributes

The LogMixin has the following methods & attributes available. Note that methods & attributes inherited from
the base class are not included here.

configure_logging(logger, console_level=’basic’, file_level=’basic’)
Configure the logging for the module this class is mixed into.

Parameters

• logger – The string name of the logger to use

• console_level – The level of logging for the console. Valid options are "none", "ba-
sic", or "full".

• file_level – The level of logging for the console. Valid options are "none", "basic",
or "full".

debug_log(msg, *args, **kwargs)
Log a message at the debug level.

Note that whether this message shows up in the console or log file is controlled by the settings used with
configure_logging().

error_log(msg, *args, **kwargs)
Log a message at the error level.

These messages will always be shown in the console and the log file.

info_log(msg, *args, **kwargs)
Log a message at the info level.

Whether this message shows up in the console or log file is controlled by the settings used with config-
ure_logging().

warning_log(msg, *args, **kwargs)
Log a message at the warning level.

These messages will always be shown in the console and the log file.

7.3. API Reference 159

MPF Documentation Developer Documentation, Release 0.33.49

Mode base class

class mpf.core.mode.Mode(machine, config: dict, name: str, path)
Bases: mpf.core.logging.LogMixin

Parent class for in-game mode code.

Methods & Attributes

The Mode base class has the following methods & attributes available. Note that methods & attributes inherited
from the base class are not included here.

active
Return true if mode is active.

add_mode_event_handler(event, handler, priority=0, **kwargs)
Register an event handler which is automatically removed when this mode stops.

This method is similar to the Event Manager’s add_handler() method, except this method automatically
unregisters the handlers when the mode ends.

Parameters

• event – String name of the event you’re adding a handler for. Since events are text
strings, they don’t have to be pre-defined.

• handler – The method that will be called when the event is fired.

• priority – An arbitrary integer value that defines what order the handlers will be called
in. The default is 1, so if you have a handler that you want to be called first, add it here
with a priority of 2. (Or 3 or 10 or 100000.) The numbers don’t matter. They’re called
from highest to lowest. (i.e. priority 100 is called before priority 1.)

• **kwargs – Any any additional keyword/argument pairs entered here will be attached
to the handler and called whenever that handler is called. Note these are in addition to
kwargs that could be passed as part of the event post. If there’s a conflict, the event-level
ones will win.

Returns A GUID reference to the handler which you can use to later remove the handler via
remove_handler_by_key. Though you don’t need to remove the handler since the
whole point of this method is they’re automatically removed when the mode stops.

Note that if you do add a handler via this method and then remove it manually, that’s ok too.

auto_stop_on_ball_end = None
Controls whether this mode is stopped when the ball ends, regardless of its stop_events settings.

configure_logging(logger, console_level=’basic’, file_level=’basic’)
Configure the logging for the module this class is mixed into.

Parameters

• logger – The string name of the logger to use

• console_level – The level of logging for the console. Valid options are "none", "ba-
sic", or "full".

• file_level – The level of logging for the console. Valid options are "none", "basic",
or "full".

configure_mode_settings(config)
Process this mode’s configuration settings from a config dictionary.

160 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.33.49

debug_log(msg, *args, **kwargs)
Log a message at the debug level.

Note that whether this message shows up in the console or log file is controlled by the settings used with
configure_logging().

error_log(msg, *args, **kwargs)
Log a message at the error level.

These messages will always be shown in the console and the log file.

static get_config_spec()
Return config spec for mode_settings.

info_log(msg, *args, **kwargs)
Log a message at the info level.

Whether this message shows up in the console or log file is controlled by the settings used with config-
ure_logging().

mode_init()
User-overrideable method which will be called when this mode initializes as part of the MPF boot process.

mode_start(**kwargs)
User-overrideable method which will be called whenever this mode starts (i.e. whenever it becomes active).

mode_stop(**kwargs)
User-overrideable method which will be called whenever this mode stops.

player = None
Reference to the current player object.

restart_on_next_ball = None
Controls whether this mode will restart on the next ball. This only works if the mode was running when
the ball ended. It’s tracked per- player in the ’restart_modes_on_next_ball’ player variable.

start(mode_priority=None, callback=None, **kwargs)
Start this mode.

Parameters

• mode_priority – Integer value of what you want this mode to run at. If you don’t
specify one, it will use the "Mode: priority" setting from this mode’s configuration file.

• **kwargs – Catch-all since this mode might start from events with who-knows-what
keyword arguments.

Warning: You can safely call this method, but do not override it in your mode code. If you want to write
your own mode code by subclassing Mode, put whatever code you want to run when this mode starts in
the mode_start method which will be called automatically.

stop(callback=None, **kwargs)
Stop this mode.

Parameters **kwargs – Catch-all since this mode might start from events with who-knows-
what keyword arguments.

Warning: You can safely call this method, but do not override it in your mode code. If you want to write
your own mode code by subclassing Mode, put whatever code you want to run when this mode stops in
the mode_stop method which will be called automatically.

warning_log(msg, *args, **kwargs)
Log a message at the warning level.

7.3. API Reference 161

MPF Documentation Developer Documentation, Release 0.33.49

These messages will always be shown in the console and the log file.

Players

class mpf.core.player.Player(machine, index)
Bases: object

Base class for a player. One instance of this class is created for each player.

The Game class maintains a "player" attribute which always points to the current player. You can access this via
game.player. (Or self.machine.game.player).

This class is responsible for tracking per-player variables. There are several ways they can be used:

player.ball = 0 (sets the player’s ’ball’ value to 0) print player.ball (prints the value of the player’s ’ball’ value)

If the value of a variable is requested but that variable doesn’t exist, that variable will automatically be created
(and returned) with a value of 0.

Every time a player variable is changed, an MPF is posted with the name "player_<name>". That event will
have three parameters posted along with it:

• value (the new value)

• prev_value (the old value before it was updated)

• change (the change in the value)

For the ’change’ parameter, it will attempt to subtract the old value from the new value. If that works, it will
return the result as the change. If it doesn’t work (like if you’re not storing numbers in this variable), then the
change paramter will be True if the new value is different and False if the value didn’t change.

Some examples:

player.score = 0

Event posted: ’player_score’ with Args: value=0, change=0, prev_value=0

player.score += 500

Event posted: ’player_score’ with Args: value=500, change=500, prev_value=0

player.score = 1200

Event posted: ’player_score’ with Args: value=1200, change=700, prev_value=500

Methods & Attributes

The Players has the following methods & attributes available. Note that methods & attributes inherited from the
base class are not included here.

is_player_var(var_name)
Check if player var exists.

monitor_enabled = False
Class attribute which specifies whether any monitors have been registered to track player variable changes.

162 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.33.49

RGBColor

class mpf.core.rgb_color.RGBColor(color=None, **kwargs)
Bases: object

One RGB Color.

Methods & Attributes

The RGBColor has the following methods & attributes available. Note that methods & attributes inherited from
the base class are not included here.

static add_color(name, color)
Add (or updates if it already exists) a color.

Note that this is not permanent, the list is reset when MPF restarts (though you can define your own custom
colors in your config file’s colors: section). You can use this function to dynamically change the values of
colors in shows (they take place the next time an LED switches to that color).

Parameters

• name – String name of the color you want to add/update

• color – The color you want to set. You can pass the same types as the RGBColor class
constructor, including a tuple or list of RGB ints (0-255 each), a hex string, an RGBColor
instance, or a dictionart of red, green, blue key/value pairs.

static blend(start_color, end_color, fraction)
Blend two colors.

Parameters

• start_color – The start color

• end_color – The end color

• fraction – The fraction between 0 and 1 that is used to set the blend point between the
two colors.

Returns: An RGBColor object that is a blend between the start and end colors

blue
Return the blue component of the RGB color representation.

green
Return the green component of the RGB color representation.

hex
Return a 6-char HEX representation of the color.

static hex_to_rgb(_hex, default=None)
Convert a HEX color representation to an RGB color representation.

Parameters

• _hex – The 3- or 6-char hexadecimal string representing the color value.

• default – The default value to return if _hex is invalid.

Returns: RGB representation of the input HEX value as a 3-item tuple with each item being an inte-
ger 0-255.

7.3. API Reference 163

MPF Documentation Developer Documentation, Release 0.33.49

name
Return the color name or None.

Returns a string containing a standard color name or None if the current RGB color does not have a
standard name.

static name_to_rgb(name, default=(0, 0, 0))
Convert a standard color name to an RGB value (tuple).

If the name is not found, the default value is returned. :param name: A standard color name. :param
default: The default value to return if the color name is not found. :return: RGB representation of the
named color. :rtype: tuple

static random_rgb()
Generate a uniformly random RGB value.

Returns A tuple of three integers with values between 0 and 255 inclusive

red
Return the red component of the RGB color representation.

rgb
Return an RGB representation of the color.

static rgb_to_hex(rgb)
Convert an RGB color representation to a HEX color representation.

(r, g, b) :: r -> [0, 255] g -> [0, 255] b -> [0, 255]

Parameters rgb – A tuple of three numeric values corresponding to the red, green, and blue
value.

Returns HEX representation of the input RGB value.

Return type str

static string_to_rgb(value, default=(0, 0, 0))
Convert a string which could be either a standard color name or a hex value to an RGB value (tuple).

If the name is not found and the supplied value is not a valid hex string it raises an error. :param value:
A standard color name or hex value. :param default: The default value to return if the color name is not
found and the supplied value is not a valid hex color string. :return: RGB representation of the named
color. :rtype: tuple

Randomizer

class mpf.core.randomizer.Randomizer(items)
Bases: object

Generic list randomizer.

Methods & Attributes

The Randomizer has the following methods & attributes available. Note that methods & attributes inherited
from the base class are not included here.

get_current()
Return current item.

164 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.33.49

get_next()
Return next item.

loop
Return loop property.

static pick_weighted_random(items)
Pick a random item.

Parameters items – Items to select from

Timers

class mpf.core.timer.Timer(machine, mode, name, config)
Bases: mpf.core.logging.LogMixin

Parent class for a mode timer.

Parameters

• machine – The main MPF MachineController object.

• mode – The parent mode object that this timer belongs to.

• name – The string name of this timer.

• config – A Python dictionary which contains the configuration settings for this timer.

Methods & Attributes

The Timers has the following methods & attributes available. Note that methods & attributes inherited from the
base class are not included here.

add(timer_value, **kwargs)
Add ticks to this timer.

Parameters

• timer_value – The number of ticks you want to add to this timer’s current value.

• kwargs – Not used in this method. Only exists since this method is often registered as an
event handler which may contain additional keyword arguments.

change_tick_interval(change=0.0, **kwargs)
Change the interval for each "tick" of this timer.

Parameters

• change – Float or int of the change you want to make to this timer’s tick rate. Note
this value is added to the current tick interval. To set an absolute value, use the
set_tick_interval() method. To shorten the tick rate, use a negative value.

• **kwargs – Not used in this method. Only exists since this method is often registered
as an event handler which may contain additional keyword arguments.

configure_logging(logger, console_level=’basic’, file_level=’basic’)
Configure the logging for the module this class is mixed into.

Parameters

• logger – The string name of the logger to use

7.3. API Reference 165

MPF Documentation Developer Documentation, Release 0.33.49

• console_level – The level of logging for the console. Valid options are "none", "ba-
sic", or "full".

• file_level – The level of logging for the console. Valid options are "none", "basic",
or "full".

debug_log(msg, *args, **kwargs)
Log a message at the debug level.

Note that whether this message shows up in the console or log file is controlled by the settings used with
configure_logging().

error_log(msg, *args, **kwargs)
Log a message at the error level.

These messages will always be shown in the console and the log file.

info_log(msg, *args, **kwargs)
Log a message at the info level.

Whether this message shows up in the console or log file is controlled by the settings used with config-
ure_logging().

jump(timer_value, **kwargs)
Set the current amount of time of this timer.

This value is expressed in "ticks" since the interval per tick can be something other than 1 second).

Parameters

• timer_value – Integer of the current value you want this timer to be.

• **kwargs – Not used in this method. Only exists since this method is often registered
as an event handler which may contain additional keyword arguments.

kill()
Stop this timer and also removes all the control events.

pause(timer_value=0, **kwargs)
Pause the timer and posts the ’timer_<name>_paused’ event.

Parameters

• timer_value – How many seconds you want to pause the timer for. Note that this pause
time is real-world seconds and does not take into consideration this timer’s tick interval.

• **kwargs – Not used in this method. Only exists since this method is often registered
as an event handler which may contain additional keyword arguments.

reset(**kwargs)
Reset this timer based to the starting value that’s already been configured.

Does not start or stop the timer.

Parameters **kwargs – Not used in this method. Only exists since this method is often
registered as an event handler which may contain additional keyword arguments.

restart(**kwargs)
Restart the timer by resetting it and then starting it.

Essentially this is just a reset() then a start().

Parameters **kwargs – Not used in this method. Only exists since this method is often
registered as an event handler which may contain additional keyword arguments.

166 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.33.49

set_tick_interval(timer_value, **kwargs)
Set the number of seconds between ticks for this timer.

This is an absolute setting. To apply a change to the current value, use the change_tick_interval() method.

Parameters

• timer_value – The new number of seconds between each tick of this timer. This value
should always be positive.

• **kwargs – Not used in this method. Only exists since this method is often registered
as an event handler which may contain additional keyword arguments.

start(**kwargs)
Start this timer based on the starting value that’s already been configured.

Use jump() if you want to set the starting time value.

Parameters **kwargs – Not used in this method. Only exists since this method is often
registered as an event handler which may contain additional keyword arguments.

stop(**kwargs)
Stop the timer and posts the ’timer_<name>_stopped’ event.

Parameters **kwargs – Not used in this method. Only exists since this method is often
registered as an event handler which may contain additional keyword arguments.

subtract(timer_value, **kwargs)
Subtract ticks from this timer.

Parameters

• timer_value – The number of ticks you want to subtract from this timer’s current
value.

• **kwargs – Not used in this method. Only exists since this method is often registered
as an event handler which may contain additional keyword arguments.

timer_complete(**kwargs)
Automatically called when this timer completes.

Posts the ’timer_<name>_complete’ event. Can be manually called to mark this timer as complete.

Parameters **kwargs – Not used in this method. Only exists since this method is often
registered as an event handler which may contain additional keyword arguments.

warning_log(msg, *args, **kwargs)
Log a message at the warning level.

These messages will always be shown in the console and the log file.

Utility Functions

class mpf.core.utility_functions.Util
Bases: object

Utility functions for MPF.

Methods & Attributes

The Utility Functions has the following methods & attributes available. Note that methods & attributes inherited
from the base class are not included here.

7.3. API Reference 167

MPF Documentation Developer Documentation, Release 0.33.49

static any(futures: [<class ’asyncio.futures.Future’>], loop, timeout=None)
Return first future.

static bin_str_to_hex_str(source_int_str, num_chars)
Convert binary string to hex string.

static cancel_futures(futures: [<class ’asyncio.futures.Future’>])
Cancel futures.

static chunker(l, n)
Yield successive n-sized chunks from l.

static convert_to_simply_type(value)
Convert value to a simple type.

static convert_to_type(value, type_name)
Convert value to type.

static db_to_gain(db)
Convert a value in decibels (-inf to 0.0) to a gain (0.0 to 1.0).

Parameters db – The decibel value (float) to convert to a gain

Returns Float

static dict_merge(a, b, combine_lists=True)
Recursively merge dictionaries.

Used to merge dictionaries of dictionaries, like when we’re merging together the machine configuration
files. This method is called recursively as it finds sub-dictionaries.

For example, in the traditional python dictionary update() methods, if a dictionary key exists in the original
and merging-in dictionary, the new value will overwrite the old value.

Consider the following example:

Original dictionary: config[’foo’][’bar’] = 1

New dictionary we’re merging in: config[’foo’][’other_bar’] = 2

Default python dictionary update() method would have the updated dictionary as this:

{’foo’: {’other_bar’: 2}}

This happens because the original dictionary which had the single key bar was overwritten by a new
dictionary which has a single key other_bar.)

But really we want this:

{’foo’: {’bar’: 1, ’other_bar’: 2}}

This code was based on this: https://www.xormedia.com/recursively-merge-dictionaries-in-python/

Parameters

• a (dict) – The first dictionary

• b (dict) – The second dictionary

• combine_lists (bool) – Controls whether lists should be combined (extended) or
overwritten. Default is True which combines them.

Returns The merged dictionaries.

static ensure_future(coro_or_future, loop)
Wrap ensure_future.

168 Chapter 7. Index

https://www.xormedia.com/recursively-merge-dictionaries-in-python/

MPF Documentation Developer Documentation, Release 0.33.49

static event_config_to_dict(config)
Convert event config to a dict.

static first(futures: [<class ’asyncio.futures.Future’>], loop, timeout=None, can-
cel_others=True)

Return first future and cancel others.

static get_from_dict(dic, key_path)
Get a value from a nested dict (or dict-like object) from an iterable of key paths.

Parameters

• dic – Nested dict of dicts to get the value from.

• key_path – iterable of key paths

Returns value

This code came from here: http://stackoverflow.com/questions/14692690/
access-python-nested-dictionary-items-via-a-list-of-keys

static get_named_list_from_objects(switches: [])→ [<class ’str’>]
Return a list of names from a list of switch objects.

static hex_string_to_int(inputstring, maxvalue=255)
Take a string input of hex numbers and an integer.

Parameters

• inputstring – A string of incoming hex colors, like ffff00.

• maxvalue – Integer of the max value you’d like to return. Default is 255. (This is the
real value of why this method exists.)

Returns Integer representation of the hex string.

static hex_string_to_list(input_string, output_length=3)
Take a string input of hex numbers and return a list of integers.

This always groups the hex string in twos, so an input of ffff00 will be returned as [255, 255, 0]

Parameters

• input_string – A string of incoming hex colors, like ffff00.

• output_length – Integer value of the number of items you’d like in your returned list.
Default is 3. This method will ignore extra characters if the input_string is too long, and it
will pad the left with zeros if the input string is too short.

Returns List of integers, like [255, 255, 0]

Raises ValueError if the input string contains non-hex chars

static int_to_hex_string(source_int)
Convert an int from 0-255 to a one-byte (2 chars) hex string, with uppercase characters.

static is_hex_string(string)
Return true if string is hex.

static is_power2(num)
Check a number to see if it’s a power of two.

Parameters num – The number to check

Returns: True or False

7.3. API Reference 169

http://stackoverflow.com/questions/14692690/access-python-nested-dictionary-items-via-a-list-of-keys
http://stackoverflow.com/questions/14692690/access-python-nested-dictionary-items-via-a-list-of-keys

MPF Documentation Developer Documentation, Release 0.33.49

static keys_to_lower(source_dict)
Convert the keys of a dictionary to lowercase.

Parameters source_dict – The dictionary you want to convert.

Returns A dictionary with lowercase keys.

static list_of_lists(incoming_string)
Convert an incoming string or list into a list of lists.

static normalize_hex_string(source_hex, num_chars=2)
Take an incoming hex value and convert it to uppercase and fills in leading zeros.

Parameters

• source_hex – Incoming source number. Can be any format.

• num_chars – Total number of characters that will be returned. Default is two.

Returns: String, uppercase, zero padded to the num_chars.

Example usage: Send "c" as source_hex, returns "0C".

static pwm32_to_hex_string(source_int)
Convert a PWM32 value to hex.

static pwm32_to_int(source_int)
Convert a PWM32 value to int.

static pwm8_to_hex_string(source_int)
Convert an int to a PWM8 string.

static pwm8_to_int(source_int)
Convert a PWM8 value to int.

static pwm8_to_on_off(source_int)
Convert a PWM8 value to on/off times.

static race(futures: {<class ’asyncio.futures.Future’>: <class ’str’>}, loop)
Return key of first future and cancel others.

static set_in_dict(dic, key_path, value)
Set a value in a nested dict-like object based on an iterable of nested keys.

Parameters

• dic – Nested dict of dicts to set the value in.

• key_path – Iterable of the path to the key of the value to set.

• value – Value to set.

static string_to_class(class_string)
Convert a string like mpf.core.events.EventManager into a Python class.

Parameters class_string (str) – The input string

Returns A reference to the python class object

This function came from here: http://stackoverflow.com/questions/452969/
does-python-have-an-equivalent-to-java-class-forname

static string_to_gain(gain_string)
Convert string to gain.

Decode a string containing either a gain value (0.0 to 1.0) or a decibel value (-inf to 0.0) into a gain value
(0.0 to 1.0).

170 Chapter 7. Index

http://stackoverflow.com/questions/452969/does-python-have-an-equivalent-to-java-class-forname
http://stackoverflow.com/questions/452969/does-python-have-an-equivalent-to-java-class-forname

MPF Documentation Developer Documentation, Release 0.33.49

Parameters gain_string – The string to convert to a gain value

Returns Float containing a gain value (0.0 to 1.0)

static string_to_list(string)
Convert a comma-separated and/or space-separated string into a Python list.

Parameters string – The string you’d like to convert.

Returns A python list object containing whatever was between commas and/or spaces in the
string.

static string_to_lowercase_list(string)
Convert a comma-separated and/or space-separated string into a Python list.

Each item in the list has been converted to lowercase.

Parameters string – The string you’d like to convert.

Returns A python list object containing whatever was between commas and/or spaces in the
string, with each item converted to lowercase.

static string_to_ms(time_string)
Decode a string of real-world time into an int of milliseconds.

Example inputs:

200ms 2s None

If no "s" or "ms" is provided, this method assumes "milliseconds."

If time is ’None’ or a string of ’None’, this method returns 0.

Returns Integer. The examples listed above return 200, 2000 and 0, respectively

static string_to_secs(time_string)
Decode a string of real-world time into an float of seconds.

See ’string_to_ms’ for a description of the time string.

data_manager

class mpf.core.data_manager.DataManager(machine, name)
Bases: mpf.core.mpf_controller.MpfController

Handles key value data loading and saving for the machine.

Methods & Attributes

The data_manager has the following methods & attributes available. Note that methods & attributes inherited
from the base class are not included here.

configure_logging(logger, console_level=’basic’, file_level=’basic’)
Configure the logging for the module this class is mixed into.

Parameters

• logger – The string name of the logger to use

• console_level – The level of logging for the console. Valid options are "none", "ba-
sic", or "full".

7.3. API Reference 171

MPF Documentation Developer Documentation, Release 0.33.49

• file_level – The level of logging for the console. Valid options are "none", "basic",
or "full".

debug_log(msg, *args, **kwargs)
Log a message at the debug level.

Note that whether this message shows up in the console or log file is controlled by the settings used with
configure_logging().

error_log(msg, *args, **kwargs)
Log a message at the error level.

These messages will always be shown in the console and the log file.

get_data(section=None)
Return the value of this DataManager’s data.

Parameters section – Optional string name of a section (dictionary key) for the data you
want returned. Default is None which returns the entire dictionary.

info_log(msg, *args, **kwargs)
Log a message at the info level.

Whether this message shows up in the console or log file is controlled by the settings used with config-
ure_logging().

remove_key(key)
Remove key by name.

save_all(data=None, delay_secs=0)
Write this DataManager’s data to the disk.

Parameters

• data – An optional dict() of the data you want to write. If None then it will write the data
as it exists in its own data attribute.

• delay_secs – Optional integer value of the amount of time you want to wait before the
disk write occurs. Useful for writes that occur when MPF is busy, so you can delay them
by a few seconds so they don’t slow down MPF. Default is 0.

save_key(key, value, delay_secs=0)
Update an individual key and then write the entire dictionary to disk.

Parameters

• key – String name of the key to add/update.

• value – Value of the key

• delay_secs – Optional number of seconds to wait before writing the data to disk. De-
fault is 0.

warning_log(msg, *args, **kwargs)
Log a message at the warning level.

These messages will always be shown in the console and the log file.

delay_manager

class mpf.core.delays.DelayManager(registry)
Bases: mpf.core.mpf_controller.MpfController

Handles delays for one object.

172 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.33.49

Methods & Attributes

The delay_manager has the following methods & attributes available. Note that methods & attributes inherited
from the base class are not included here.

add(ms, callback, name=None, **kwargs)
Add a delay.

Parameters

• ms – Int of the number of milliseconds you want this delay to be for. Note that the reso-
lution of this time is based on your machine’s tick rate. The callback will be called on the
first machine tick after the delay time has expired. For example, if you have a machine
tick rate of 30Hz, that’s 33.33ms per tick. So if you set a delay for 40ms, the actual delay
will be 66.66ms since that’s the next tick time after the delay ends.

• callback – The method that is called when this delay ends.

• name – String name of this delay. This name is arbitrary and only used to identify the
delay later if you want to remove or change it. If you don’t provide it, a UUID4 name will
be created.

• **kwargs – Any other (optional) kwarg pairs you pass will be passed along as kwargs
to the callback method.

Returns String name of the delay which you can use to remove it later.

add_if_doesnt_exist(ms, callback, name, **kwargs)
Add a delay only if a delay with that name doesn’t exist already.

Parameters

• ms – Int of the number of milliseconds you want this delay to be for. Note that the reso-
lution of this time is based on your machine’s tick rate. The callback will be called on the
first machine tick after the delay time has expired. For example, if you have a machine
tick rate of 30Hz, that’s 33.33ms per tick. So if you set a delay for 40ms, the actual delay
will be 66.66ms since that’s the next tick time after the delay ends.

• callback – The method that is called when this delay ends.

• name – String name of this delay. This name is arbitrary and only used to identify the
delay later if you want to remove or change it.

• **kwargs – Any other (optional) kwarg pairs you pass will be passed along as kwargs
to the callback method.

Returns String name of the delay which you can use to remove it later.

check(delay)
Check to see if a delay exists.

Parameters delay – A string of the delay you’re checking for.

Returns: The delay object if it exists, or None if not.

clear()
Remove (clear) all the delays associated with this DelayManager.

configure_logging(logger, console_level=’basic’, file_level=’basic’)
Configure the logging for the module this class is mixed into.

Parameters

• logger – The string name of the logger to use

7.3. API Reference 173

MPF Documentation Developer Documentation, Release 0.33.49

• console_level – The level of logging for the console. Valid options are "none", "ba-
sic", or "full".

• file_level – The level of logging for the console. Valid options are "none", "basic",
or "full".

debug_log(msg, *args, **kwargs)
Log a message at the debug level.

Note that whether this message shows up in the console or log file is controlled by the settings used with
configure_logging().

error_log(msg, *args, **kwargs)
Log a message at the error level.

These messages will always be shown in the console and the log file.

info_log(msg, *args, **kwargs)
Log a message at the info level.

Whether this message shows up in the console or log file is controlled by the settings used with config-
ure_logging().

remove(name)
Remove a delay by name.

I.e. prevents the callback from being fired and cancels the delay.

Parameters name – String name of the delay you want to remove. If there is no delay with this
name, that’s ok. Nothing happens.

reset(ms, callback, name, **kwargs)
Reset a delay, first deleting the old one (if it exists) and then adding new delay with the new settings.

Parameters as add() (same) –

run_now(name)
Run a delay callback now instead of waiting until its time comes.

This will cancel the future running of the delay callback.

Parameters name – Name of the delay to run. If this name is not an active delay, that’s fine.
Nothing happens.

warning_log(msg, *args, **kwargs)
Log a message at the warning level.

These messages will always be shown in the console and the log file.

delay_manager_registry

class mpf.core.delays.DelayManagerRegistry(machine)
Bases: object

Keeps references to all DelayManager instances.

Methods & Attributes

The delay_manager_registry has the following methods & attributes available. Note that methods & attributes
inherited from the base class are not included here.

174 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.33.49

add_delay_manager(delay_manager)
Add a delay manager to the list.

7.4 Automated Testing

The MPF dev team are strong believers in automated testing, and we use a test-driven development (TDD) process for
developing MPF itself. (At the time of this writing, there are over 700 unit tests for MPF and MPF-MC, each which
test multiple aspects of the codebase.)

We have extended Python’s built-in unittest TestCase class for MPF-specific tests, including mocking critical internal
elements and adding assertion methods for MPF features.

You can run built-in tests to test MPF itself or extend them if you think you found a bug or if you’re adding features to
MPF.

We have also built TestCase classes you can use to write unittests for your own game.

7.4.1 How to run MPF unittests

Once MPF is installed, you can run some automated tests to make sure that everything is working. To do this, open a
command prompt, and then type the following command and then press <enter>:

python3 -m unittest discover mpf

When you do this, you should see a bunch of dots on the screen (one for each test that’s run), and then when it’s done,
you should see a message showing how many tests were run and that they were successful. The whole process should
take less a minute or so.

(If you see any messages about some tests taking more than 0.5s, that’s ok.)

The important thing is that when the tests are done, you should have a message like this:

Ran 587 tests in 27.121s

OK

C:\>

Note that the number of tests is changing all the time, so it probably won’t be exactly 501. And also the time they took
to run will be different depending on how fast your computer is.

These tests are the actual tests that the developers of MPF use to test MPF itself. We wrote all these tests to make sure
that updates and changes we add to MPF don’t break things. :) So if these tests pass, you know your MPF installation
is solid.

Remember though that MPF is actually two separate parts, the MPF game engine and the MPF media controller. The
command you run just tested the game engine, so now let’s test the media controller. To do this, run the following
command (basically the same thing as last time but with an "mc" added to the end, like this):

python3 -m unittest discover mpfmc

(Note that mpfmc does not have a dash in it, like it did when you installed it via pip.)

When you run the MPF-MC tests, you should see a graphical window pop up on the screen, and many of the tests will
put graphics and words in that window. Also, some of the tests include audio, so if your speakers are on you should
hear some sounds at some point.

7.4. Automated Testing 175

https://en.wikipedia.org/wiki/Test-driven_development

MPF Documentation Developer Documentation, Release 0.33.49

These tests take significantly longer (maybe 8x) than the MPF tests, but when they’re done, that graphical window
should close, and you’ll see all the dots in your command window and a note that all the tests were successful.

Notes about the MPF-MC tests:

• These tests create a window on the screen and then just re-use the same window for all tests (to save time). So
don’t worry if it looks like the window content is scaled weird or blurry or doesn’t fill the entire window.

• Many of these tests are used to test internal workings of the media controller itself, so there will be lots of time
when the pop up window is blank or appears frozen since the tests are testing non-visual things.

• The animation and transition tests include testing functionality to stop, restart, pause, and skip frames. So if
things look "jerky" in the tests, don’t worry, that doesn’t mean your computer is slow, it’s just how the tests
work! :)

7.4.2 Writing Unit Tests for MPF

todo

7.4.3 Writing Unit Tests for Your Game

It’s possible to create unit tests which test the actual functionality of your MPF game. These tests are extremely
valuable even if your game is just based on config files.

For example, you can write a test that simulates starting a game and hitting a sequence of switches, then you can check
to make sure the a certain mode is running, or a light is the right color, or an achievement group is in the proper state,
etc. Then you can advance the time to timeout a mode and verify that the mode as stopped, etc, etc.

Here’s how you can create a basic unit test for your machine.

If you want to see a real example, check out the tests from Gabe Knuth’s Brooks ’n Dunn machine:

https://github.com/GabeKnuth/BnD/blob/master/tests/test_bnd.py

1. Add a tests folder to your machine folder

todo

7.4.4 Fuzz Testing

todo

7.5 Extending MPF

These guides explain how to setup a dev environment for extending and adding to MPF itself, and how to add various
components to MPF.

176 Chapter 7. Index

https://github.com/GabeKnuth/BnD/blob/master/tests/test_bnd.py

MPF Documentation Developer Documentation, Release 0.33.49

7.5.1 Setting up your MPF Dev Environment

If you want to work on the core MPF or MPF-MC code, you have to install MPF and MPF-MC a bit differently than
the normal process.

Why? Because normally when you install MPF and MPF-MC via pip, they get installed as Python packages into your
Python/Lib/site-packages folder, and that location is not too conducive to editing MPF source code since
it’s in a deep random location. Also, if you ever ran pip again to update your MPF installation, you would potentially
overwrite any changes you made.

Instead, you need to install MPF and MPF-MC in "developer" (also known as "editable") mode. This mode will let
you run MPF and MPF-MC from the folder of your choice, and will allow code changes or additions you make to be
immediately available whenever you run MPF.

1. Install a git client

MPF is cross-platform and runs the same on Mac, Windows, or Linux. So any changes or additions you make should
work on all platforms.

If you’re on Windows or Mac, the easiest way to get a git client installed is to use the GitHub Desktop app. This app
will also install the git command line tools.

2. Clone the MPF and/or MPF-MC repo(s)

Clone the mpf repository and its submodules :

git clone --recursive https://github.com/missionpinball/mpf.git

Same thing for the mpf-mc repository :

git clone --recursive https://github.com/missionpinball/mpf-mc.git

If you’re using the GitHub Desktop app, you can also browse to the repos on GitHub and click the green "Clone or
Download" button, and then click the "Open in Desktop" link. That will pop up a box that prompts you to pick a folder
for the local codebase.

Then inside that folder, you’ll end up with an mpf folder for MPF and mpf-mc folder for MPF-MC.

3. Install MPF / MPF-MC in "developer" mode

Create a "virtualenv" for your MPF development in a mpf-env directory (Note : if you don’t have virtualenv installed,
you can get it via pip by running pip3 install virtualenv.

Using virtualenv lets you keep all the other Python packages MPF needs (pyserial, pyyaml, kivy, etc.) together in
a "virtual" environment that you’ll use for MPF and helps keep everything in your Python environment cleaner in
general.

Create a new virtualenv called "mpf-venv" (or whatever you want to name it) like this:

virtualenv -p python3 mpf-venv

Then enter the newly-created virtualenv:

source mpf-venv/bin/activate

7.5. Extending MPF 177

https://desktop.github.com/

MPF Documentation Developer Documentation, Release 0.33.49

Each time you’ll work with your MPF development version you’ll have to switch to this environment. Note: in this
environment, thanks to the "-p python3" option of virtualenv, the version of Python and pip is 3.x automatically.

Next you’ll install MPF and MPF-MC. This is pretty much like a regular install, except that you’ll also use the -e
command line option which means these packages will be installed in "editable" mode.

Install mpf and mpf-mc like this:

pip install -e mpf
pip install -e mpf-mc

You should now be done, and you can verify that everyething is installed properly via:

mpf --version

Note : you could also install mpf and mpf-mc in your global environment using sudo pip3 install -e mpf
and sudo pip3 install -e mpf-mc, or in your user environment using pip3 install --user -e
mpf and pip3 install --user -e mpf-mc.

4. Make your changes

Be sure to add your name to the AUTHORS file in the root of the MPF or MPF-MC repo!

5. Write / update unit tests

We make heavy use of unit tests to ensure that future changes don’t break existing functionality. So write new unit
tests to cover whatever you just wrote, and be sure to rerun all the unit tests to make sure your changes or additions
didn’t break anything else.

More information on creating and running MPF unit tests is here.

6. Submit a pull request

If your change fixes an open issue, reference that issue number in the comments, like "fixes #123".

7.5.2 Writing Plugins for MPF

todo

7.5.3 Developing your own hardware interface for MPF

todo

7.6 BCP Protocol Specification

This document describes the Backbox Control Protocol, (or "BCP"), a simple, fast protocol for communications
between an implementation of a pinball game controller and a multimedia controller.

Note: BCP is how the MPF core engine and the MPF media controller communicate.

178 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.33.49

BCP transmits semantically relevant information and attempts to isolate specific behaviors and identifiers on both
sides. i.e., the pin controller is responsible for telling the media controller “start multiball mode”. The pin controller
doesn’t care what the media controller does with that information, and the media controller doesn’t care what happened
on the pin controller that caused the multiball mode to start.

BCP is versioned to prevent conflicts. Future versions of the BCP will be designed to be backward compatible to every
degree possible. The reference implementation uses a raw TCP socket for communication. On localhost the latency is
usually sub-millisecond and on LANs it is under 10 milliseconds. That means that the effect of messages is generally
under 1/100th of a second, which should be considered instantaneous from the perspective of human perception.

It is important to note that this document specifies the details of the protocol itself, not necessarily the behaviors of
any specific implementations it connects. Thus, there won’t be details about fonts or sounds or images or videos or
shaders here; those are up to specific implementation being driven.

Warning: Since the pin controller and media controller are both state machines synchronized through the use of
commands, it is possible for the programmer to inadvertently set up infinite loops. These can be halted with the
“reset” command or “hello” described below.

7.6.1 Background

While the BCP protocol was created as part of the MPF project, the intention is that BCP is an open protocol that
could connect any pinball controller to any media controller.

7.6.2 Protocol Format

• Commands are human-readable text in a format similar to URLs, e.g. command?
parameter1=value¶meter2=value

• Command characters are encoded with the utf-8 character encoding. This allows ad-hoc text for languages that
use characters past ASCII-7 bit, such as Japanese Kanji.

• Command and parameter names are whitespace-trimmed on both ends by the recipient

• Commands are case-insensitive

• Parameters are optional. If present, a question mark separates the command from its parameters

• Parameters are in the format name=value

• Parameter names are case-insensitive

• Parameter values are case-sensitive

• Simple parameter values are prefixed with a string that indicates their data type: (int:, float:, bool:,
NoneType:). For example, the integer 5 would appear in the command string as int:5.

• When a command includes one or more complex value types (list or dict) all parameters are encoded using
JSON and the resulting encoded value is assigned to the json: parameter.

• Parameters are separated by an ampersand (&)

• Parameter names and their values are escaped using percent encoding as necessary; (details here).

• Commands are terminated by a line feed character (\n). Carriage return characters (\r) should be tolerated but
are not significant.

• A blank line (no command) is ignored

• Commands beginning with a hash character (#) are ignored

7.6. BCP Protocol Specification 179

https://en.wikipedia.org/wiki/Percent-encoding

MPF Documentation Developer Documentation, Release 0.33.49

• If a command passes unknown parameters, the recipient should ignore them.

• The pinball controller and the media controller must be resilient to network problems; if a connection is lost, it
can simply re-open it to resume operation. There is no requirement to buffer unsendable commands to transmit
on reconnection.

• Once initial handshaking has completed on the first connection, subsequent re-connects do not have to handshake
again.

• An unrecognized command results in an error response with the message “unknown command”

In all commands referenced below, the \n terminator is implicit. Some characters in parameters such as spaces would
really be encoded as %20 (space) in operation, but are left unencoded here for clarity.

7.6.3 Initial Handshake

When a connection is initially established, the pinball controller transmits the following command:

hello?version=1.0

...where 1.0 is the version of the Backbox protocol it wants to speak. The media controller may reply with one of two
responses:

hello?version=1.0

...indicating that it can speak the protocol version named, and reporting the version it speaks, or

error?message=unknown protocol version

...indicating that it cannot. How the pin controller handles this situation is implementation-dependent.

7.6.4 BCP commands

The following BCP commands have been defined (and implemented) in MPF:

ball_end (BCP command)

Indicates the ball has ended. Note that this does not necessarily mean that the next player’s turn will start, as this
player may have an extra ball which means they’ll shoot again.

Origin

Pin controller

Parameters

None

Response

None

180 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.33.49

ball_start (BCP command)

Indicates a new ball has started. It passes the player number (1, 2, etc.) and the ball number as parameters. This
command will be sent every time a ball starts, even if the same player is shooting again after an extra ball.

Origin

Pin controller

Parameters

player_num

Type: int

The player number.

ball

Type: int

The ball number.

Response

None

device (BCP command)

Origin

Pin controller or media controller

Parameters

type

Type: string

The type/class of device (ex: coil).

name

Type: string

The name of the device.

7.6. BCP Protocol Specification 181

MPF Documentation Developer Documentation, Release 0.33.49

changes

Type: tuple (attribute name, old value, new value)

The change to the device state.

state

Type: varies (depending upon device type)

The device state.

Response

None

error (BCP command)

This is a command used to convey error messages back to the origin of a command.

Origin

Pin controller or media controller

Parameters

message

Type: string

The error message.

command

Type: string

The command that was invalid and caused the error.

Response

None

goodbye (BCP command)

Lets one side tell the other than it’s shutting down.

182 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.33.49

Origin

Pin controller or media controller

Parameters

None

Response

None

hello (BCP command)

This is the initial handshake command upon first connection. It sends the BCP protocol version that the origin con-
troller speaks.

Origin

Pin controller or media controller

Parameters

version

Type: string

The BCP communication specification version implemented in the controller (ex: 1.0).

controller_name

Type: string

The name of the controller (ex: Mission Pinball Framework).

controller_version

Type: string

The version of the controller (ex: 0.33.0).

Response

When received by the media controller, this command automatically triggers a hard “reset”. If the pin controller
is sending this command, the media controller will respond with either its own “hello” command, or the error “un-
known protocol version.” The pin controller should never respond to this command when it receives it from the media
controller; that would trigger an infinite loop.

7.6. BCP Protocol Specification 183

MPF Documentation Developer Documentation, Release 0.33.49

machine_variable (BCP command)

This is a generic "catch all" which sends machine variables to the media controller any time they change. Machine
variables are like player variables, except they’re maintained machine-wide instead of per-player or per-game. Since
the pin controller will most likely track hundreds of variables (with many being internal things that the media controller
doesn’t care about), it’ s recommended that the pin controller has a way to filter which machine variables are sent to
the media controller.

Origin

Pin controller

Parameters

name

Type: string

This is the name of the machine variable.

value

Type: Varies depending upon the variable type.

This is the new value of the machine variable.

prev_value

Type: Varies depending upon the variable type.

This is the previous value of the machine variable.

change

Type: Varies depending upon the variable type.

If the machine variable just changed, this will be the amount of the change. If it’s not possible to determine a numeric
change (for example, if this machine variable is a string), then this change value will be set to the boolean True.

Response

None

mode_start (BCP command)

A game mode has just started. The mode is passed via the name parameter, and the mode’s priority is passed as an
integer via the priority.

184 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.33.49

Origin

Pin controller

Parameters

name

Type: string

The mode name.

priority

Type: int

The mode priority.

Response

None

mode_stop (BCP command)

Indicates the mode has stopped.

Origin

Pin controller

Parameters

name

Type: string

The mode name.

Response

None

7.6. BCP Protocol Specification 185

MPF Documentation Developer Documentation, Release 0.33.49

monitor_start (BCP command)

New in version 0.33.

Request from the media controller to the pin controller to begin monitoring events in the specified category. Events
will not be automatically sent to the media controller from the pin controller via BCP unless they are requested using
the monitor_start or register_trigger commands.

Origin

Media controller

Parameters

category

Single string value, type: one of the following options: events, devices, machine_vars, player_vars, switches, modes,
ball, or timer.

The value of category determines the category of events to begin monitoring. Options for category are:

• events - All events in the pin controller

• devices - All device state changes

• machine_vars - All machine variable changes

• player_vars - All player variable changes

• switches - All switch state changes

• modes - All mode events (start, stop)

• core_events - Core MPF events (ball handing, player turn, etc.)

Response

None

monitor_stop (BCP command)

New in version 0.33.

Request from the media controller to the pin controller to stop monitoring events in the specified category. Once a
monitor has been started, events will continue to be automatically sent to the media controller from the pin controller
via BCP until they are stopped using the monitor_stop or remove_trigger commands.

Origin

Media controller

186 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.33.49

Parameters

category

Single string value, type: one of the following options: events, devices, machine_vars, player_vars, switches, modes,
ball, or timer.

The value of category determines the category of events to stop monitoring. Options for category are:

• events - All events in the pin controller

• devices - All device state changes

• machine_vars - All machine variable changes

• player_vars - All player variable changes

• switches - All switch state changes

• modes - All mode events (start, stop)

• core_events - Core MPF events (ball handing, player turn, etc.)

Response

None

player_added (BCP command)

A player has just been added, with the player number passed via the player_num parameter. Typically these commands
only occur during Ball 1.

Origin

Pin controller

Parameters

player_num

Type: int

The player number just added.

Response

None

player_turn_start (BCP command)

A new player’s turn has begun. If a player has an extra ball, this command will not be sent between balls. However, a
new ball_start command will be sent when the same player’s additional balls start.

7.6. BCP Protocol Specification 187

MPF Documentation Developer Documentation, Release 0.33.49

Origin

Pin controller

Parameters

player_num

Type: int

The player number.

Response

None

player_variable (BCP command)

This is a generic "catch all" which sends player-specific variables to the media controller any time they change. Since
the pin controller will most likely track hundreds of variables per player (with many being internal things that the media
controller doesn’t care about), it’s recommended that the pin controller has a way to filter which player variables are
sent to the media controller. Also note the parameter player_num indicates which player this variable is for (starting
with 1 for the first player). While it’s usually the case that the player_variable command will be sent for the player
whose turn it is, that’s not always the case. (For example, when a second player is added during the first player’s ball,
the second player’s default variables will be initialized at 0 and a player_variable event for player 2 will be sent even
though player 1 is up.

Origin

Pin controller

Parameters

name

Type: string

This is the name of the player variable.

player_num

Type: int

This is the player number the variable is for (starting with 1 for the first player).

188 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.33.49

value

Type: Varies depending upon the variable type.

This is the new value of the player variable.

prev_value

Type: Varies depending upon the variable type.

This is the previous value of the player variable.

change

Type: Varies depending upon the variable type.

If the player variable just changed, this will be the amount of the change. If it’s not possible to determine a numeric
change (for example, if this player variable is a string), then this change value will be set to the boolean True.

Response

None

register_trigger (BCP command)

Request from the media controller to the pin controller to register an event name as a trigger so it will be sent via BCP
to the media controller whenever the event is posted in MPF.

Origin

Media controller

Parameters

event

Type: string

This is the name of the trigger event to register with the pin controller.

Response

None

7.6. BCP Protocol Specification 189

MPF Documentation Developer Documentation, Release 0.33.49

remove_trigger (BCP command)

New in version 0.33.

Request from the media controller to the pin controller to cancel/deregister an event name as a trigger so it will no
longer be sent via BCP to the media controller whenever the event is posted in MPF.

Origin

Media controller

Parameters

event

Type: string

This is the name of the trigger event to cancel/deregister with the pin controller.

Response

None

reset (BCP command)

This command notifies the media controller that the pin controller is in the process of performing a reset. If necessary,
the media controller should perform its own reset process. The media controller must respond with a reset_complete
command when finished.

Origin

Pin controller

Parameters

None

Response

reset_complete when reset process has finished

reset_complete (BCP command)

This command notifies the pin controller that reset process is now complete. It must be sent in response to receiving a
reset command.

190 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.33.49

Origin

Media controller

Parameters

None

Response

None

switch (BCP command)

Indicates that the other side should process the changed state of a switch. When sent from the media controller to
the pin controller, this is typically used to implement a virtual keyboard interface via the media controller (where the
player can activate pinball machine switches via keyboard keys for testing). For example, for the media controller to
tell the pin controller that the player just pushed the start button, the command would be:

switch?name=start&state=1

followed very quickly by

switch?name=start&state=0

When sent from the pin controller to the media controller, this is used to send switch inputs to things like video modes,
high score name entry, and service menu navigation. Note that the pin controller should not send the state of every
switch change at all times, as the media controller doesn’t need it and that would add lots of unnecessary commands.
Instead the pin controller should only send switches based on some mode of operation that needs them. (For example,
when the video mode starts, the pin controller would start sending the switch states of the flipper buttons, and when
the video mode ends, it would stop.)

Origin

Pin controller or media controller

Parameters

name

Type: string

This is the name of the switch.

state

Type: int

The new switch state: 1 for active, and 0 for inactive.

7.6. BCP Protocol Specification 191

MPF Documentation Developer Documentation, Release 0.33.49

Response

None

trigger (BCP command)

This command allows the one side to trigger the other side to do something. For example, the pin controller might
send trigger commands to tell the media controller to start shows, play sound effects, or update the display. The media
controller might send a trigger to the pin controller to flash the strobes at the down beat of a music track or to pulse
the knocker in concert with a replay show.

Origin

Pin controller or media controller

Parameters

name

Type: string

This is the name of the trigger.

Note: Trigger messages may contain any additional parameters as needed by the application.

Response

Varies

7.7 Method & Class Index

192 Chapter 7. Index

Index

Symbols
_settings (mpf.core.settings_controller.SettingsController

attribute), 42

A
a_side_busy (mpf.platforms.snux.HardwarePlatform at-

tribute), 119
Accelerometer (class in mpf.devices.accelerometer), 48
Achievement (class in mpf.devices.achievement), 49
AchievementGroup (class in

mpf.devices.achievement_group), 49
activate() (mpf.devices.diverter.Diverter method), 58
active (mpf.core.mode.Mode attribute), 160
active (mpf.modes.attract.code.attract.Attract attribute),

88
active (mpf.modes.bonus.code.bonus.Bonus attribute), 90
active (mpf.modes.carousel.code.carousel.Carousel at-

tribute), 92
active (mpf.modes.credits.code.credits.Credits attribute),

94
active (mpf.modes.game.code.game.Game attribute), 96
active (mpf.modes.high_score.code.high_score.HighScore

attribute), 99
active (mpf.modes.match.code.match.Match attribute),

101
active (mpf.modes.service.code.service.Service attribute),

103
active (mpf.modes.tilt.code.tilt.Tilt attribute), 104
active_sequences (mpf.devices.shot.Shot attribute), 85
add() (mpf.core.delays.DelayManager method), 173
add() (mpf.core.timer.Timer method), 165
add_a_ball() (mpf.devices.multiball.Multiball method),

74
add_ball() (mpf.devices.playfield.Playfield method), 77
add_ball_to_device() (mpf.platforms.smart_virtual.HardwarePlatform

method), 118
add_captured_ball() (mpf.core.ball_controller.BallController

method), 29

add_color() (mpf.core.rgb_color.RGBColor static
method), 163

add_credit() (mpf.modes.credits.code.credits.Credits
method), 94

add_delay_manager() (mpf.core.delays.DelayManagerRegistry
method), 174

add_handler() (mpf.core.events.EventManager method),
31

add_handler() (mpf.devices.gi.Gi method), 64
add_handler() (mpf.devices.matrix_light.MatrixLight

method), 69
add_handler() (mpf.devices.switch.Switch method), 87
add_if_doesnt_exist() (mpf.core.delays.DelayManager

method), 173
add_incoming_ball() (mpf.devices.ball_device.ball_device.BallDevice

method), 51
add_incoming_ball() (mpf.devices.playfield.Playfield

method), 77
add_missing_balls() (mpf.devices.playfield.Playfield

method), 77
add_mode_event_handler() (mpf.core.mode.Mode

method), 160
add_mode_event_handler()

(mpf.modes.attract.code.attract.Attract
method), 88

add_mode_event_handler()
(mpf.modes.bonus.code.bonus.Bonus method),
90

add_mode_event_handler()
(mpf.modes.carousel.code.carousel.Carousel
method), 92

add_mode_event_handler()
(mpf.modes.credits.code.credits.Credits
method), 94

add_mode_event_handler()
(mpf.modes.game.code.game.Game method),
96

add_mode_event_handler()
(mpf.modes.high_score.code.high_score.HighScore
method), 99

193

MPF Documentation Developer Documentation, Release 0.33.49

add_mode_event_handler()
(mpf.modes.match.code.match.Match method),
101

add_mode_event_handler()
(mpf.modes.service.code.service.Service
method), 103

add_mode_event_handler() (mpf.modes.tilt.code.tilt.Tilt
method), 104

add_monitor() (mpf.core.switch_controller.SwitchController
method), 45

add_platform() (mpf.core.machine.MachineController
method), 37

add_platform() (mpf.tests.MpfTestCase.TestMachineController
method), 154

add_profile() (mpf.devices.shot.Shot method), 85
add_setting() (mpf.core.settings_controller.SettingsController

method), 42
add_switch_handler() (mpf.core.switch_controller.SwitchController

method), 45
add_to_bank() (mpf.devices.drop_target.DropTarget

method), 60
add_to_group() (mpf.devices.achievement.Achievement

method), 50
add_value() (mpf.devices.score_reel_group.ScoreReelGroup

method), 79
advance() (mpf.devices.score_reel.ScoreReel method), 81
advance() (mpf.devices.shot.Shot method), 85
advance() (mpf.devices.shot_group.ShotGroup method),

83
any() (mpf.core.utility_functions.Util static method), 167
are_balls_collected() (mpf.core.ball_controller.BallController

method), 29
assertAlmostEqual() (mpf.tests.MpfBcpTestCase.MpfBcpTestCase

method), 131
assertAlmostEqual() (mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase

method), 135
assertAlmostEqual() (mpf.tests.MpfGameTestCase.MpfGameTestCase

method), 140
assertAlmostEqual() (mpf.tests.MpfMachineTestCase.MpfMachineTestCase

method), 144
assertAlmostEqual() (mpf.tests.MpfTestCase.MpfTestCase

method), 149
assertCountEqual() (mpf.tests.MpfBcpTestCase.MpfBcpTestCase

method), 131
assertCountEqual() (mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase

method), 135
assertCountEqual() (mpf.tests.MpfGameTestCase.MpfGameTestCase

method), 140
assertCountEqual() (mpf.tests.MpfMachineTestCase.MpfMachineTestCase

method), 145
assertCountEqual() (mpf.tests.MpfTestCase.MpfTestCase

method), 149
assertDictContainsSubset()

(mpf.tests.MpfBcpTestCase.MpfBcpTestCase

method), 131
assertDictContainsSubset()

(mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 135

assertDictContainsSubset()
(mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 140

assertDictContainsSubset()
(mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 145

assertDictContainsSubset()
(mpf.tests.MpfTestCase.MpfTestCase method),
149

assertEqual() (mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 131

assertEqual() (mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 136

assertEqual() (mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 140

assertEqual() (mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 145

assertEqual() (mpf.tests.MpfTestCase.MpfTestCase
method), 149

assertEventCalled() (mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 131

assertEventCalled() (mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 136

assertEventCalled() (mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 140

assertEventCalled() (mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 145

assertEventCalled() (mpf.tests.MpfTestCase.MpfTestCase
method), 149

assertEventCalledWith() (mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 131

assertEventCalledWith() (mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 136

assertEventCalledWith() (mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 140

assertEventCalledWith() (mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 145

assertEventCalledWith() (mpf.tests.MpfTestCase.MpfTestCase
method), 149

assertEventNotCalled() (mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 131

assertEventNotCalled() (mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 136

assertEventNotCalled() (mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 140

assertEventNotCalled() (mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 145

assertEventNotCalled() (mpf.tests.MpfTestCase.MpfTestCase
method), 149

194 Index

MPF Documentation Developer Documentation, Release 0.33.49

assertFalse() (mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 131

assertFalse() (mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 136

assertFalse() (mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 140

assertFalse() (mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 145

assertFalse() (mpf.tests.MpfTestCase.MpfTestCase
method), 149

assertGreater() (mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 131

assertGreater() (mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 136

assertGreater() (mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 140

assertGreater() (mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 145

assertGreater() (mpf.tests.MpfTestCase.MpfTestCase
method), 150

assertGreaterEqual() (mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 131

assertGreaterEqual() (mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 136

assertGreaterEqual() (mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 140

assertGreaterEqual() (mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 145

assertGreaterEqual() (mpf.tests.MpfTestCase.MpfTestCase
method), 150

assertIn() (mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 131

assertIn() (mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 136

assertIn() (mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 141

assertIn() (mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 145

assertIn() (mpf.tests.MpfTestCase.MpfTestCase method),
150

assertIs() (mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 131

assertIs() (mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 136

assertIs() (mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 141

assertIs() (mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 145

assertIs() (mpf.tests.MpfTestCase.MpfTestCase method),
150

assertIsInstance() (mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 131

assertIsInstance() (mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 136

assertIsInstance() (mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 141

assertIsInstance() (mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 145

assertIsInstance() (mpf.tests.MpfTestCase.MpfTestCase
method), 150

assertIsNone() (mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 131

assertIsNone() (mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 136

assertIsNone() (mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 141

assertIsNone() (mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 145

assertIsNone() (mpf.tests.MpfTestCase.MpfTestCase
method), 150

assertIsNot() (mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 131

assertIsNot() (mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 136

assertIsNot() (mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 141

assertIsNot() (mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 145

assertIsNot() (mpf.tests.MpfTestCase.MpfTestCase
method), 150

assertIsNotNone() (mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 132

assertIsNotNone() (mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 136

assertIsNotNone() (mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 141

assertIsNotNone() (mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 145

assertIsNotNone() (mpf.tests.MpfTestCase.MpfTestCase
method), 150

assertLess() (mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 132

assertLess() (mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 136

assertLess() (mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 141

assertLess() (mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 145

assertLess() (mpf.tests.MpfTestCase.MpfTestCase
method), 150

assertLessEqual() (mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 132

assertLessEqual() (mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 136

assertLessEqual() (mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 141

assertLessEqual() (mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 146

Index 195

MPF Documentation Developer Documentation, Release 0.33.49

assertLessEqual() (mpf.tests.MpfTestCase.MpfTestCase
method), 150

assertListEqual() (mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 132

assertListEqual() (mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 136

assertListEqual() (mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 141

assertListEqual() (mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 146

assertListEqual() (mpf.tests.MpfTestCase.MpfTestCase
method), 150

assertLogs() (mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 132

assertLogs() (mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 136

assertLogs() (mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 141

assertLogs() (mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 146

assertLogs() (mpf.tests.MpfTestCase.MpfTestCase
method), 150

assertMultiLineEqual() (mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 132

assertMultiLineEqual() (mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 137

assertMultiLineEqual() (mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 141

assertMultiLineEqual() (mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 146

assertMultiLineEqual() (mpf.tests.MpfTestCase.MpfTestCase
method), 150

assertNotAlmostEqual() (mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 132

assertNotAlmostEqual() (mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 137

assertNotAlmostEqual() (mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 141

assertNotAlmostEqual() (mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 146

assertNotAlmostEqual() (mpf.tests.MpfTestCase.MpfTestCase
method), 150

assertNotEqual() (mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 132

assertNotEqual() (mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 137

assertNotEqual() (mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 142

assertNotEqual() (mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 146

assertNotEqual() (mpf.tests.MpfTestCase.MpfTestCase
method), 151

assertNotIn() (mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 132

assertNotIn() (mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 137

assertNotIn() (mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 142

assertNotIn() (mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 146

assertNotIn() (mpf.tests.MpfTestCase.MpfTestCase
method), 151

assertNotIsInstance() (mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 132

assertNotIsInstance() (mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 137

assertNotIsInstance() (mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 142

assertNotIsInstance() (mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 146

assertNotIsInstance() (mpf.tests.MpfTestCase.MpfTestCase
method), 151

assertNotRegex() (mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 132

assertNotRegex() (mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 137

assertNotRegex() (mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 142

assertNotRegex() (mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 146

assertNotRegex() (mpf.tests.MpfTestCase.MpfTestCase
method), 151

assertRaises() (mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 132

assertRaises() (mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 137

assertRaises() (mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 142

assertRaises() (mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 146

assertRaises() (mpf.tests.MpfTestCase.MpfTestCase
method), 151

assertRaisesRegex() (mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 133

assertRaisesRegex() (mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 137

assertRaisesRegex() (mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 142

assertRaisesRegex() (mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 147

assertRaisesRegex() (mpf.tests.MpfTestCase.MpfTestCase
method), 151

assertRegex() (mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 133

assertRegex() (mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 138

assertRegex() (mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 142

196 Index

MPF Documentation Developer Documentation, Release 0.33.49

assertRegex() (mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 147

assertRegex() (mpf.tests.MpfTestCase.MpfTestCase
method), 151

assertSequenceEqual() (mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 133

assertSequenceEqual() (mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 138

assertSequenceEqual() (mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 142

assertSequenceEqual() (mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 147

assertSequenceEqual() (mpf.tests.MpfTestCase.MpfTestCase
method), 151

assertSetEqual() (mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 133

assertSetEqual() (mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 138

assertSetEqual() (mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 143

assertSetEqual() (mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 147

assertSetEqual() (mpf.tests.MpfTestCase.MpfTestCase
method), 152

assertShotProfile() (mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 134

assertShotProfile() (mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 138

assertShotProfile() (mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 143

assertShotProfile() (mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 147

assertShotProfile() (mpf.tests.MpfTestCase.MpfTestCase
method), 152

assertShotProfileState() (mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 134

assertShotProfileState() (mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 138

assertShotProfileState() (mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 143

assertShotProfileState() (mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 148

assertShotProfileState() (mpf.tests.MpfTestCase.MpfTestCase
method), 152

assertShotShow() (mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 134

assertShotShow() (mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 138

assertShotShow() (mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 143

assertShotShow() (mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 148

assertShotShow() (mpf.tests.MpfTestCase.MpfTestCase
method), 152

assertTrue() (mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 134

assertTrue() (mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 138

assertTrue() (mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 143

assertTrue() (mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 148

assertTrue() (mpf.tests.MpfTestCase.MpfTestCase
method), 152

assertTupleEqual() (mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 134

assertTupleEqual() (mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 138

assertTupleEqual() (mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 143

assertTupleEqual() (mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 148

assertTupleEqual() (mpf.tests.MpfTestCase.MpfTestCase
method), 152

assertWarns() (mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 134

assertWarns() (mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 139

assertWarns() (mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 143

assertWarns() (mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 148

assertWarns() (mpf.tests.MpfTestCase.MpfTestCase
method), 152

assertWarnsRegex() (mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 134

assertWarnsRegex() (mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 139

assertWarnsRegex() (mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 143

assertWarnsRegex() (mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 148

assertWarnsRegex() (mpf.tests.MpfTestCase.MpfTestCase
method), 153

assumed_value_int (mpf.devices.score_reel_group.ScoreReelGroup
attribute), 79

assumed_value_list (mpf.devices.score_reel_group.ScoreReelGroup
attribute), 79

AsyncioSyncAssetManager (class in mpf.core.assets), 27
Attract (class in mpf.modes.attract.code.attract), 88
audit() (mpf.plugins.auditor.Auditor method), 27
audit_event() (mpf.plugins.auditor.Auditor method), 28
audit_player() (mpf.plugins.auditor.Auditor method), 28
audit_shot() (mpf.plugins.auditor.Auditor method), 28
audit_switch() (mpf.plugins.auditor.Auditor method), 28
Auditor (class in mpf.plugins.auditor), 27
auto_stop_on_ball_end (mpf.core.mode.Mode attribute),

160

Index 197

MPF Documentation Developer Documentation, Release 0.33.49

AutofireCoil (class in mpf.devices.autofire), 50
available_balls (mpf.devices.ball_device.ball_device.BallDevice

attribute), 51
award() (mpf.core.extra_balls.ExtraBallController

method), 35
award() (mpf.devices.extra_ball.ExtraBall method), 62
award_extra_ball() (mpf.modes.game.code.game.Game

method), 96
award_lit() (mpf.core.extra_balls.ExtraBallController

method), 35

B
ball_arrived() (mpf.devices.playfield.Playfield method),

77
ball_drained() (mpf.modes.game.code.game.Game

method), 96
ball_ended() (mpf.modes.game.code.game.Game

method), 96
ball_ending() (mpf.modes.game.code.game.Game

method), 97
ball_search_block() (mpf.devices.playfield.Playfield

method), 77
ball_search_disable() (mpf.devices.playfield.Playfield

method), 78
ball_search_enable() (mpf.devices.playfield.Playfield

method), 78
ball_search_unblock() (mpf.devices.playfield.Playfield

method), 78
ball_started() (mpf.modes.game.code.game.Game

method), 97
ball_starting() (mpf.modes.game.code.game.Game

method), 97
BallController (class in mpf.core.ball_controller), 28
BallDevice (class in mpf.devices.ball_device.ball_device),

51
BallHold (class in mpf.devices.ball_hold), 53
BallLock (class in mpf.devices.ball_lock), 54
balls (mpf.devices.ball_device.ball_device.BallDevice at-

tribute), 52
balls (mpf.devices.playfield.Playfield attribute), 78
balls_in_play (mpf.modes.game.code.game.Game at-

tribute), 97
BallSave (class in mpf.devices.ball_save), 55
BallSearch (class in mpf.core.ball_search), 157
Bcp (class in mpf.core.bcp.bcp), 29
bin_str_to_hex_str() (mpf.core.utility_functions.Util

static method), 168
blend() (mpf.core.rgb_color.RGBColor static method),

163
block() (mpf.core.ball_search.BallSearch method), 157
blue (mpf.core.rgb_color.RGBColor attribute), 163
Bonus (class in mpf.modes.bonus.code.bonus), 90

C
c_side_active (mpf.platforms.snux.HardwarePlatform at-

tribute), 119
cancel_ball_search() (mpf.core.ball_search.BallSearch

method), 157
cancel_futures() (mpf.core.utility_functions.Util static

method), 168
cancel_path_if_target_is()

(mpf.devices.ball_device.ball_device.BallDevice
method), 52

capacity (mpf.devices.ball_device.ball_device.BallDevice
attribute), 52

Carousel (class in mpf.modes.carousel.code.carousel), 92
change_tick_interval() (mpf.core.timer.Timer method),

165
check() (mpf.core.delays.DelayManager method), 173
check_for_complete() (mpf.devices.shot_group.ShotGroup

method), 83
check_hw_switches() (mpf.devices.score_reel.ScoreReel

method), 82
chime() (mpf.devices.score_reel_group.ScoreReelGroup

class method), 79
chunker() (mpf.core.utility_functions.Util static method),

168
clear() (mpf.core.delays.DelayManager method), 173
clear_all_credits() (mpf.modes.credits.code.credits.Credits

method), 94
clear_boot_hold() (mpf.core.machine.MachineController

method), 37
clear_boot_hold() (mpf.tests.MpfTestCase.TestMachineController

method), 154
clear_context() (mpf.config_players.coil_player.CoilPlayer

method), 123
clear_context() (mpf.config_players.gi_player.GiPlayer

method), 125
clear_context() (mpf.config_players.led_player.LedPlayer

method), 125
clear_context() (mpf.config_players.light_player.LightPlayer

method), 126
clear_context() (mpf.config_players.queue_relay_player.QueueRelayPlayer

method), 127
clear_context() (mpf.config_players.score_player.ScorePlayer

method), 128
clear_context() (mpf.config_players.show_player.ShowPlayer

method), 128
clear_hw_rule() (mpf.devices.driver.Driver method), 56
clear_hw_rule() (mpf.platforms.fast.fast.HardwarePlatform

method), 107
clear_hw_rule() (mpf.platforms.opp.opp.HardwarePlatform

method), 111
clear_hw_rule() (mpf.platforms.snux.HardwarePlatform

method), 119
clear_hw_rule() (mpf.platforms.spike.spike.SpikePlatform

method), 120

198 Index

MPF Documentation Developer Documentation, Release 0.33.49

clear_hw_rule() (mpf.platforms.virtual.HardwarePlatform
method), 122

clear_stack() (mpf.devices.led.Led method), 67
clear_stack() (mpf.devices.matrix_light.MatrixLight

method), 69
CoilPlayer (class in mpf.config_players.coil_player), 123
collect_balls() (mpf.core.ball_controller.BallController

method), 29
color() (mpf.devices.led.Led method), 67
color() (mpf.devices.led_group.LedRing method), 66
color() (mpf.devices.led_group.LedStrip method), 66
color_correct() (mpf.devices.led.Led method), 67
ComboSwitch (class in mpf.devices.combo_switch), 58
complete() (mpf.devices.achievement.Achievement

method), 50
config (mpf.core.machine.MachineController attribute),

37
ConfigProcessor (class in mpf.core.config_processor), 30
configure_accelerometer()

(mpf.platforms.p3_roc.HardwarePlatform
method), 115

configure_accelerometer()
(mpf.platforms.virtual.HardwarePlatform
method), 122

configure_dmd() (mpf.platforms.fast.fast.HardwarePlatform
method), 107

configure_dmd() (mpf.platforms.p_roc.HardwarePlatform
method), 116

configure_dmd() (mpf.platforms.spike.spike.SpikePlatform
method), 120

configure_dmd() (mpf.platforms.virtual.HardwarePlatform
method), 122

configure_driver() (mpf.platforms.fast.fast.HardwarePlatform
method), 107

configure_driver() (mpf.platforms.opp.opp.HardwarePlatform
method), 111

configure_driver() (mpf.platforms.p3_roc.HardwarePlatform
method), 115

configure_driver() (mpf.platforms.p_roc.HardwarePlatform
method), 116

configure_driver() (mpf.platforms.smart_virtual.HardwarePlatform
method), 118

configure_driver() (mpf.platforms.snux.HardwarePlatform
method), 119

configure_driver() (mpf.platforms.spike.spike.SpikePlatform
method), 120

configure_driver() (mpf.platforms.virtual.HardwarePlatform
method), 122

configure_gi() (mpf.platforms.fast.fast.HardwarePlatform
method), 107

configure_gi() (mpf.platforms.p3_roc.HardwarePlatform
method), 115

configure_gi() (mpf.platforms.p_roc.HardwarePlatform
method), 116

configure_gi() (mpf.platforms.virtual.HardwarePlatform
method), 122

configure_led() (mpf.platforms.fast.fast.HardwarePlatform
method), 107

configure_led() (mpf.platforms.openpixel.HardwarePlatform
method), 111

configure_led() (mpf.platforms.opp.opp.HardwarePlatform
method), 111

configure_led() (mpf.platforms.virtual.HardwarePlatform
method), 122

configure_logging() (mpf.core.ball_search.BallSearch
method), 157

configure_logging() (mpf.core.data_manager.DataManager
method), 171

configure_logging() (mpf.core.delays.DelayManager
method), 173

configure_logging() (mpf.core.logging.LogMixin
method), 159

configure_logging() (mpf.core.mode.Mode method), 160
configure_logging() (mpf.core.timer.Timer method), 165
configure_logging() (mpf.modes.attract.code.attract.Attract

method), 89
configure_logging() (mpf.modes.bonus.code.bonus.Bonus

method), 91
configure_logging() (mpf.modes.carousel.code.carousel.Carousel

method), 93
configure_logging() (mpf.modes.credits.code.credits.Credits

method), 94
configure_logging() (mpf.modes.game.code.game.Game

method), 97
configure_logging() (mpf.modes.high_score.code.high_score.HighScore

method), 100
configure_logging() (mpf.modes.match.code.match.Match

method), 101
configure_logging() (mpf.modes.service.code.service.Service

method), 103
configure_logging() (mpf.modes.tilt.code.tilt.Tilt

method), 105
configure_matrixlight() (mpf.platforms.fast.fast.HardwarePlatform

method), 108
configure_matrixlight() (mpf.platforms.opp.opp.HardwarePlatform

method), 112
configure_matrixlight() (mpf.platforms.p3_roc.HardwarePlatform

method), 115
configure_matrixlight() (mpf.platforms.p_roc.HardwarePlatform

method), 116
configure_matrixlight() (mpf.platforms.spike.spike.SpikePlatform

method), 120
configure_matrixlight() (mpf.platforms.virtual.HardwarePlatform

method), 122
configure_mode_settings() (mpf.core.mode.Mode

method), 160
configure_rgb_dmd() (mpf.platforms.smartmatrix.SmartMatrix

method), 118

Index 199

MPF Documentation Developer Documentation, Release 0.33.49

configure_rgb_dmd() (mpf.platforms.virtual.HardwarePlatform
method), 122

configure_servo() (mpf.platforms.fast.fast.HardwarePlatform
method), 108

configure_servo() (mpf.platforms.i2c_servo_controller.HardwarePlatform
method), 110

configure_servo() (mpf.platforms.pololu_maestro.HardwarePlatform
method), 117

configure_servo() (mpf.platforms.virtual.HardwarePlatform
method), 122

configure_switch() (mpf.platforms.fast.fast.HardwarePlatform
method), 108

configure_switch() (mpf.platforms.opp.opp.HardwarePlatform
method), 112

configure_switch() (mpf.platforms.p3_roc.HardwarePlatform
method), 115

configure_switch() (mpf.platforms.p_roc.HardwarePlatform
method), 116

configure_switch() (mpf.platforms.spike.spike.SpikePlatform
method), 120

configure_switch() (mpf.platforms.virtual.HardwarePlatform
method), 122

convert_number_from_config()
(mpf.platforms.fast.fast.HardwarePlatform
method), 108

convert_to_simply_type()
(mpf.core.utility_functions.Util static method),
168

convert_to_type() (mpf.core.utility_functions.Util static
method), 168

create_collection_control_events()
(mpf.core.device_manager.DeviceManager
method), 30

create_data_manager() (mpf.core.machine.MachineController
method), 37

create_devices() (mpf.core.device_manager.DeviceManager
method), 30

create_machine_var() (mpf.core.machine.MachineController
method), 37

create_machine_var() (mpf.tests.MpfTestCase.TestMachineController
method), 154

create_machinewide_device_control_events()
(mpf.core.device_manager.DeviceManager
method), 30

Credits (class in mpf.modes.credits.code.credits), 94

D
DataManager (class in mpf.core.data_manager), 171
db_to_gain() (mpf.core.utility_functions.Util static

method), 168
deactivate() (mpf.devices.diverter.Diverter method), 58
debug_log() (mpf.core.ball_search.BallSearch method),

157

debug_log() (mpf.core.data_manager.DataManager
method), 172

debug_log() (mpf.core.delays.DelayManager method),
174

debug_log() (mpf.core.logging.LogMixin method), 159
debug_log() (mpf.core.mode.Mode method), 160
debug_log() (mpf.core.timer.Timer method), 166
debug_log() (mpf.modes.attract.code.attract.Attract

method), 89
debug_log() (mpf.modes.bonus.code.bonus.Bonus

method), 91
debug_log() (mpf.modes.carousel.code.carousel.Carousel

method), 93
debug_log() (mpf.modes.credits.code.credits.Credits

method), 95
debug_log() (mpf.modes.game.code.game.Game

method), 97
debug_log() (mpf.modes.high_score.code.high_score.HighScore

method), 100
debug_log() (mpf.modes.match.code.match.Match

method), 101
debug_log() (mpf.modes.service.code.service.Service

method), 103
debug_log() (mpf.modes.tilt.code.tilt.Tilt method), 105
delayed_eject() (mpf.devices.ball_save.BallSave

method), 56
DelayManager (class in mpf.core.delays), 172
DelayManagerRegistry (class in mpf.core.delays), 174
deregister_group() (mpf.devices.shot.Shot method), 85
DeviceManager (class in mpf.core.device_manager), 30
dict_merge() (mpf.core.utility_functions.Util static

method), 168
disable() (mpf.core.ball_search.BallSearch method), 157
disable() (mpf.devices.achievement.Achievement

method), 50
disable() (mpf.devices.achievement_group.AchievementGroup

method), 49
disable() (mpf.devices.autofire.AutofireCoil method), 51
disable() (mpf.devices.ball_hold.BallHold method), 53
disable() (mpf.devices.ball_lock.BallLock method), 54
disable() (mpf.devices.ball_save.BallSave method), 56
disable() (mpf.devices.diverter.Diverter method), 59
disable() (mpf.devices.driver.Driver method), 56
disable() (mpf.devices.dual_wound_coil.DualWoundCoil

method), 61
disable() (mpf.devices.flipper.Flipper method), 63
disable() (mpf.devices.gi.Gi method), 64
disable() (mpf.devices.kickback.Kickback method), 65
disable() (mpf.devices.magnet.Magnet method), 72
disable() (mpf.devices.multiball.Multiball method), 74
disable() (mpf.devices.multiball_lock.MultiballLock

method), 73
disable() (mpf.devices.shot.Shot method), 85

200 Index

MPF Documentation Developer Documentation, Release 0.33.49

disable() (mpf.devices.shot_group.ShotGroup method),
83

disable() (mpf.plugins.auditor.Auditor method), 28
disable_keep_up() (mpf.devices.drop_target.DropTarget

method), 60
disable_rotation() (mpf.devices.shot_group.ShotGroup

method), 83
Diverter (class in mpf.devices.diverter), 58
does_event_exist() (mpf.core.events.EventManager

method), 32
Driver (class in mpf.devices.driver), 56
driver_action() (mpf.platforms.snux.HardwarePlatform

method), 119
DropTarget (class in mpf.devices.drop_target), 60
DropTargetBank (class in mpf.devices.drop_target), 59
DualWoundCoil (class in mpf.devices.dual_wound_coil),

61
dump() (mpf.core.mode_controller.ModeController

method), 40
dump_ball_counts() (mpf.core.ball_controller.BallController

method), 29

E
early_ball_save() (mpf.devices.ball_save.BallSave

method), 56
eject() (mpf.devices.ball_device.ball_device.BallDevice

method), 52
eject_all() (mpf.devices.ball_device.ball_device.BallDevice

method), 52
enable() (mpf.core.ball_search.BallSearch method), 157
enable() (mpf.devices.achievement.Achievement

method), 50
enable() (mpf.devices.achievement_group.AchievementGroup

method), 49
enable() (mpf.devices.autofire.AutofireCoil method), 51
enable() (mpf.devices.ball_hold.BallHold method), 53
enable() (mpf.devices.ball_lock.BallLock method), 55
enable() (mpf.devices.ball_save.BallSave method), 56
enable() (mpf.devices.diverter.Diverter method), 59
enable() (mpf.devices.driver.Driver method), 56
enable() (mpf.devices.dual_wound_coil.DualWoundCoil

method), 61
enable() (mpf.devices.flipper.Flipper method), 63
enable() (mpf.devices.gi.Gi method), 64
enable() (mpf.devices.kickback.Kickback method), 65
enable() (mpf.devices.magnet.Magnet method), 72
enable() (mpf.devices.multiball.Multiball method), 74
enable() (mpf.devices.multiball_lock.MultiballLock

method), 73
enable() (mpf.devices.shot.Shot method), 85
enable() (mpf.devices.shot_group.ShotGroup method),

83
enable() (mpf.plugins.auditor.Auditor method), 28

enable_credit_play() (mpf.modes.credits.code.credits.Credits
method), 95

enable_free_play() (mpf.modes.credits.code.credits.Credits
method), 95

enable_keep_up() (mpf.devices.drop_target.DropTarget
method), 60

enable_rotation() (mpf.devices.shot_group.ShotGroup
method), 84

enabled (mpf.devices.achievement_group.AchievementGroup
attribute), 49

enabled (mpf.devices.shot.Shot attribute), 85
enabled (mpf.devices.shot_group.ShotGroup attribute),

84
enabled (mpf.plugins.auditor.Auditor attribute), 28
ensure_future() (mpf.core.utility_functions.Util static

method), 168
entrance() (mpf.devices.ball_device.ball_device.BallDevice

method), 52
eom_resp() (mpf.platforms.opp.opp.HardwarePlatform

static method), 112
error_log() (mpf.core.ball_search.BallSearch method),

157
error_log() (mpf.core.data_manager.DataManager

method), 172
error_log() (mpf.core.delays.DelayManager method), 174
error_log() (mpf.core.logging.LogMixin method), 159
error_log() (mpf.core.mode.Mode method), 161
error_log() (mpf.core.timer.Timer method), 166
error_log() (mpf.modes.attract.code.attract.Attract

method), 89
error_log() (mpf.modes.bonus.code.bonus.Bonus

method), 91
error_log() (mpf.modes.carousel.code.carousel.Carousel

method), 93
error_log() (mpf.modes.credits.code.credits.Credits

method), 95
error_log() (mpf.modes.game.code.game.Game method),

97
error_log() (mpf.modes.high_score.code.high_score.HighScore

method), 100
error_log() (mpf.modes.match.code.match.Match

method), 102
error_log() (mpf.modes.service.code.service.Service

method), 103
error_log() (mpf.modes.tilt.code.tilt.Tilt method), 105
event_config_to_dict() (mpf.core.utility_functions.Util

static method), 168
EventManager (class in mpf.core.events), 31
EventPlayer (class in mpf.config_players.event_player),

123
events (mpf.core.machine.MachineController attribute),

37
expected_ball_received()

(mpf.devices.ball_device.ball_device.BallDevice

Index 201

MPF Documentation Developer Documentation, Release 0.33.49

method), 52
expected_ball_received() (mpf.devices.playfield.Playfield

method), 78
ExtraBall (class in mpf.devices.extra_ball), 62
ExtraBallController (class in mpf.core.extra_balls), 35

F
fade_task() (mpf.devices.led.Led method), 67
fade_task() (mpf.devices.matrix_light.MatrixLight

method), 70
fail() (mpf.tests.MpfBcpTestCase.MpfBcpTestCase

method), 135
fail() (mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase

method), 139
fail() (mpf.tests.MpfGameTestCase.MpfGameTestCase

method), 144
fail() (mpf.tests.MpfMachineTestCase.MpfMachineTestCase

method), 148
fail() (mpf.tests.MpfTestCase.MpfTestCase method), 153
FileManager (class in mpf.core.file_manager), 158
fill_troughs() (mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase

method), 139
fill_troughs() (mpf.tests.MpfGameTestCase.MpfGameTestCase

method), 144
find_available_ball_in_path()

(mpf.devices.ball_device.ball_device.BallDevice
method), 52

find_next_trough() (mpf.devices.ball_device.ball_device.BallDevice
method), 52

find_one_available_ball()
(mpf.devices.ball_device.ball_device.BallDevice
method), 52

find_path_to_target() (mpf.devices.ball_device.ball_device.BallDevice
method), 52

first() (mpf.core.utility_functions.Util static method), 169
flash() (mpf.devices.flasher.Flasher method), 62
Flasher (class in mpf.devices.flasher), 62
FlasherPlayer (class in

mpf.config_players.flasher_player), 124
fling_ball() (mpf.devices.magnet.Magnet method), 72
Flipper (class in mpf.devices.flipper), 63

G
Game (class in mpf.modes.game.code.game), 96
game (mpf.core.machine.MachineController attribute),

37
game_ended() (mpf.modes.game.code.game.Game

method), 97
game_ending() (mpf.modes.game.code.game.Game

method), 97
game_started() (mpf.modes.game.code.game.Game

method), 98
gamma_correct() (mpf.devices.led.Led method), 67

get_active_event_for_switch()
(mpf.core.switch_controller.SwitchController
static method), 45

get_additional_ball_capacity()
(mpf.devices.playfield.Playfield class method),
78

get_brightness() (mpf.devices.matrix_light.MatrixLight
method), 70

get_coil_config_section()
(mpf.platforms.fast.fast.HardwarePlatform
class method), 108

get_coil_config_section()
(mpf.platforms.opp.opp.HardwarePlatform
class method), 112

get_coil_map() (mpf.core.service_controller.ServiceController
method), 41

get_coil_overwrite_section()
(mpf.platforms.fast.fast.HardwarePlatform
class method), 108

get_color() (mpf.devices.led.Led method), 67
get_config_spec() (mpf.core.mode.Mode static method),

161
get_configured_driver() (mpf.devices.driver.Driver

method), 57
get_configured_driver() (mpf.devices.flasher.Flasher

method), 63
get_configured_switch() (mpf.devices.switch.Switch

method), 87
get_current() (mpf.core.randomizer.Randomizer method),

164
get_data() (mpf.core.data_manager.DataManager

method), 172
get_data() (mpf.tests.TestDataManager.TestDataManager

method), 154
get_device_control_events()

(mpf.core.device_manager.DeviceManager
method), 30

get_event_and_condition_from_string()
(mpf.core.events.EventManager method),
32

get_express_config() (mpf.config_players.coil_player.CoilPlayer
method), 123

get_express_config() (mpf.config_players.event_player.EventPlayer
method), 124

get_express_config() (mpf.config_players.flasher_player.FlasherPlayer
method), 124

get_express_config() (mpf.config_players.gi_player.GiPlayer
method), 125

get_express_config() (mpf.config_players.led_player.LedPlayer
method), 125

get_express_config() (mpf.config_players.light_player.LightPlayer
method), 126

get_express_config() (mpf.config_players.queue_event_player.QueueEventPlayer
method), 126

202 Index

MPF Documentation Developer Documentation, Release 0.33.49

get_express_config() (mpf.config_players.queue_relay_player.QueueRelayPlayer
method), 127

get_express_config() (mpf.config_players.random_event_player.RandomEventPlayer
method), 127

get_express_config() (mpf.config_players.score_player.ScorePlayer
method), 128

get_express_config() (mpf.config_players.show_player.ShowPlayer
method), 128

get_express_config() (mpf.config_players.trigger_player.TriggerPlayer
method), 129

get_file_interface() (mpf.core.file_manager.FileManager
static method), 158

get_from_dict() (mpf.core.utility_functions.Util static
method), 169

get_full_config() (mpf.config_players.led_player.LedPlayer
method), 125

get_full_config() (mpf.config_players.light_player.LightPlayer
method), 126

get_gen2_cfg_resp() (mpf.platforms.opp.opp.HardwarePlatform
method), 112

get_global_parameters() (mpf.core.placeholder_manager.PlaceholderManager
method), 41

get_hold_value() (mpf.platforms.opp.opp.HardwarePlatform
class method), 112

get_hw_switch_states() (mpf.platforms.fast.fast.HardwarePlatform
method), 108

get_hw_switch_states() (mpf.platforms.opp.opp.HardwarePlatform
method), 112

get_hw_switch_states() (mpf.platforms.p3_roc.HardwarePlatform
method), 115

get_hw_switch_states() (mpf.platforms.p_roc.HardwarePlatform
method), 117

get_hw_switch_states() (mpf.platforms.spike.spike.SpikePlatform
method), 120

get_hw_switch_states() (mpf.platforms.virtual.HardwarePlatform
method), 122

get_level_xyz() (mpf.devices.accelerometer.Accelerometer
method), 48

get_level_xz() (mpf.devices.accelerometer.Accelerometer
method), 48

get_level_yz() (mpf.devices.accelerometer.Accelerometer
method), 48

get_list_config() (mpf.config_players.event_player.EventPlayer
method), 124

get_list_config() (mpf.config_players.random_event_player.RandomEventPlayer
method), 127

get_list_config() (mpf.config_players.score_player.ScorePlayer
method), 128

get_machine_var() (mpf.core.machine.MachineController
method), 38

get_machine_var() (mpf.tests.MpfTestCase.TestMachineController
method), 155

get_minimum_off_time()
(mpf.platforms.opp.opp.HardwarePlatform

class method), 112
get_monitorable_devices()

(mpf.core.device_manager.DeviceManager
method), 31

get_named_list_from_objects()
(mpf.core.utility_functions.Util static method),
169

get_next() (mpf.core.randomizer.Randomizer method),
164

get_next_show_id() (mpf.core.show_controller.ShowController
method), 44

get_next_timed_switch_event()
(mpf.core.switch_controller.SwitchController
method), 45

get_physical_value_list()
(mpf.devices.score_reel_group.ScoreReelGroup
method), 79

get_platform_sections() (mpf.core.machine.MachineController
method), 38

get_platform_sections() (mpf.tests.MpfTestCase.TestMachineController
method), 155

get_profile_by_key() (mpf.devices.shot.Shot method), 85
get_running_shows() (mpf.core.show_controller.ShowController

method), 44
get_setting_value() (mpf.core.settings_controller.SettingsController

method), 42
get_setting_value_label()

(mpf.core.settings_controller.SettingsController
method), 42

get_settings() (mpf.core.settings_controller.SettingsController
method), 42

get_switch_config_section()
(mpf.platforms.fast.fast.HardwarePlatform
class method), 108

get_switch_map() (mpf.core.service_controller.ServiceController
method), 41

get_token() (mpf.devices.led_group.LedRing method),
66

get_token() (mpf.devices.led_group.LedStrip method),
66

getConfigFile() (mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 135

getConfigFile() (mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 139

getConfigFile() (mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 144

getConfigFile() (mpf.tests.MpfTestCase.MpfTestCase
method), 153

getMachinePath() (mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 135

getMachinePath() (mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 139

getMachinePath() (mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 144

Index 203

MPF Documentation Developer Documentation, Release 0.33.49

getMachinePath() (mpf.tests.MpfTestCase.MpfTestCase
method), 153

Gi (class in mpf.devices.gi), 64
GiPlayer (class in mpf.config_players.gi_player), 124
give_up() (mpf.core.ball_search.BallSearch method), 157
go_to_position() (mpf.devices.motor.Motor method), 73
go_to_position() (mpf.devices.servo.Servo method), 83
grab_ball() (mpf.devices.magnet.Magnet method), 72
green (mpf.core.rgb_color.RGBColor attribute), 163

H
hardware_platforms (mpf.core.machine.MachineController

attribute), 37
HardwarePlatform (class in mpf.platforms.fadecandy),

106
HardwarePlatform (class in mpf.platforms.fast.fast), 107
HardwarePlatform (class in

mpf.platforms.i2c_servo_controller), 110
HardwarePlatform (class in mpf.platforms.openpixel),

110
HardwarePlatform (class in mpf.platforms.opp.opp), 111
HardwarePlatform (class in mpf.platforms.p3_roc), 114
HardwarePlatform (class in mpf.platforms.p_roc), 116
HardwarePlatform (class in

mpf.platforms.pololu_maestro), 117
HardwarePlatform (class in mpf.platforms.smart_virtual),

117
HardwarePlatform (class in mpf.platforms.snux), 118
HardwarePlatform (class in mpf.platforms.virtual), 121
hex (mpf.core.rgb_color.RGBColor attribute), 163
hex_string_to_int() (mpf.core.utility_functions.Util static

method), 169
hex_string_to_list() (mpf.core.utility_functions.Util static

method), 169
hex_to_rgb() (mpf.core.rgb_color.RGBColor static

method), 163
HighScore (class in mpf.modes.high_score.code.high_score),

99
hit() (mpf.devices.shot.Shot method), 85
hit() (mpf.devices.shot_group.ShotGroup method), 84
hold() (mpf.devices.ball_device.ball_device.BallDevice

method), 52
hurry_up() (mpf.modes.bonus.code.bonus.Bonus

method), 91
hw_state (mpf.devices.switch.Switch attribute), 87

I
i2c_read16() (mpf.platforms.p3_roc.HardwarePlatform

method), 115
i2c_read16() (mpf.platforms.virtual.HardwarePlatform

method), 122
i2c_read8() (mpf.platforms.p3_roc.HardwarePlatform

method), 115

i2c_read8() (mpf.platforms.virtual.HardwarePlatform
method), 122

i2c_write8() (mpf.platforms.p3_roc.HardwarePlatform
method), 115

i2c_write8() (mpf.platforms.virtual.HardwarePlatform
method), 122

info_log() (mpf.core.ball_search.BallSearch method),
157

info_log() (mpf.core.data_manager.DataManager
method), 172

info_log() (mpf.core.delays.DelayManager method), 174
info_log() (mpf.core.logging.LogMixin method), 159
info_log() (mpf.core.mode.Mode method), 161
info_log() (mpf.core.timer.Timer method), 166
info_log() (mpf.modes.attract.code.attract.Attract

method), 89
info_log() (mpf.modes.bonus.code.bonus.Bonus

method), 91
info_log() (mpf.modes.carousel.code.carousel.Carousel

method), 93
info_log() (mpf.modes.credits.code.credits.Credits

method), 95
info_log() (mpf.modes.game.code.game.Game method),

98
info_log() (mpf.modes.high_score.code.high_score.HighScore

method), 100
info_log() (mpf.modes.match.code.match.Match

method), 102
info_log() (mpf.modes.service.code.service.Service

method), 103
info_log() (mpf.modes.tilt.code.tilt.Tilt method), 105
InfoLights (class in mpf.plugins.info_lights), 36
init() (mpf.core.file_manager.FileManager class method),

158
init_done() (mpf.core.machine.MachineController

method), 38
init_done() (mpf.tests.MpfTestCase.TestMachineController

method), 155
initialize() (mpf.devices.score_reel_group.ScoreReelGroup

method), 79
initialize() (mpf.platforms.fast.fast.HardwarePlatform

method), 108
initialize() (mpf.platforms.i2c_servo_controller.HardwarePlatform

method), 110
initialize() (mpf.platforms.openpixel.HardwarePlatform

method), 111
initialize() (mpf.platforms.opp.opp.HardwarePlatform

method), 112
initialize() (mpf.platforms.pololu_maestro.HardwarePlatform

method), 117
initialize() (mpf.platforms.smart_virtual.HardwarePlatform

method), 118
initialize() (mpf.platforms.smartmatrix.SmartMatrix

method), 118

204 Index

MPF Documentation Developer Documentation, Release 0.33.49

initialize() (mpf.platforms.snux.HardwarePlatform
method), 119

initialize() (mpf.platforms.spike.spike.SpikePlatform
method), 120

initialize() (mpf.platforms.virtual.HardwarePlatform
method), 122

initialize_devices() (mpf.core.device_manager.DeviceManager
method), 31

int_to_hex_string() (mpf.core.utility_functions.Util static
method), 169

int_to_reel_list() (mpf.devices.score_reel_group.ScoreReelGroup
method), 79

inv_resp() (mpf.platforms.opp.opp.HardwarePlatform
method), 112

is_active() (mpf.core.mode_controller.ModeController
method), 40

is_active() (mpf.core.switch_controller.SwitchController
method), 45

is_desired_valid() (mpf.devices.score_reel_group.ScoreReelGroup
method), 80

is_full() (mpf.devices.ball_hold.BallHold method), 54
is_full() (mpf.devices.ball_lock.BallLock method), 55
is_hex_string() (mpf.core.utility_functions.Util static

method), 169
is_in_service() (mpf.core.service_controller.ServiceController

method), 41
is_inactive() (mpf.core.switch_controller.SwitchController

method), 45
is_machine_var() (mpf.core.machine.MachineController

method), 38
is_machine_var() (mpf.tests.MpfTestCase.TestMachineController

method), 155
is_player_var() (mpf.core.player.Player method), 162
is_playfield() (mpf.devices.ball_device.ball_device.BallDevice

class method), 52
is_playfield() (mpf.devices.playfield.Playfield class

method), 78
is_power2() (mpf.core.utility_functions.Util static

method), 169
is_state() (mpf.core.switch_controller.SwitchController

method), 45
is_virtually_full (mpf.devices.multiball_lock.MultiballLock

attribute), 74

J
jump() (mpf.core.timer.Timer method), 166
jump() (mpf.devices.shot.Shot method), 86

K
keys_to_lower() (mpf.core.utility_functions.Util static

method), 169
Kickback (class in mpf.devices.kickback), 65
kill() (mpf.core.timer.Timer method), 166

knockdown() (mpf.devices.drop_target.DropTarget
method), 60

L
Led (class in mpf.devices.led), 66
LedPlayer (class in mpf.config_players.led_player), 125
LedRing (class in mpf.devices.led_group), 65
LedStrip (class in mpf.devices.led_group), 66
light() (mpf.core.extra_balls.ExtraBallController

method), 35
light() (mpf.devices.score_reel_group.ScoreReelGroup

method), 80
LightPlayer (class in mpf.config_players.light_player),

125
list_of_lists() (mpf.core.utility_functions.Util static

method), 170
load() (mpf.core.file_manager.FileManager static

method), 159
load_asset() (mpf.core.assets.AsyncioSyncAssetManager

method), 27
load_config_file() (mpf.core.config_processor.ConfigProcessor

static method), 30
load_devices_config() (mpf.core.device_manager.DeviceManager

method), 31
locate_file() (mpf.core.file_manager.FileManager static

method), 159
locked_balls (mpf.devices.multiball_lock.MultiballLock

attribute), 74
log_active_switches() (mpf.core.switch_controller.SwitchController

method), 46
LogicBlocks (class in mpf.core.logic_blocks), 36
LogMixin (class in mpf.core.logging), 159
loop (mpf.core.randomizer.Randomizer attribute), 165
lost_ejected_ball() (mpf.devices.ball_device.ball_device.BallDevice

method), 52
lost_idle_ball() (mpf.devices.ball_device.ball_device.BallDevice

method), 52
lost_incoming_ball() (mpf.devices.ball_device.ball_device.BallDevice

method), 52

M
machine (mpf.platforms.p3_roc.HardwarePlatform

attribute), 114
machine (mpf.platforms.p_roc.HardwarePlatform at-

tribute), 116
machine_path (mpf.core.machine.MachineController at-

tribute), 37
MachineController (class in mpf.core.machine), 36
Magnet (class in mpf.devices.magnet), 72
mark_playfield_active_from_device_action()

(mpf.devices.playfield.Playfield method),
78

Match (class in mpf.modes.match.code.match), 101
MatrixLight (class in mpf.devices.matrix_light), 69

Index 205

MPF Documentation Developer Documentation, Release 0.33.49

member_state_changed()
(mpf.devices.achievement_group.AchievementGroup
method), 49

member_target_change()
(mpf.devices.drop_target.DropTargetBank
method), 60

MockBcpClient (class in mpf.tests.MpfBcpTestCase),
130

Mode (class in mpf.core.mode), 160
mode_init() (mpf.core.mode.Mode method), 161
mode_start() (mpf.core.mode.Mode method), 161
mode_start_for_shot_groups()

(mpf.core.shot_profile_manager.ShotProfileManager
method), 43

mode_start_for_shots() (mpf.core.shot_profile_manager.ShotProfileManager
method), 43

mode_stop() (mpf.core.mode.Mode method), 161
mode_stop() (mpf.devices.led.Led class method), 67
mode_stop() (mpf.devices.matrix_light.MatrixLight class

method), 70
mode_stop_for_shot_groups()

(mpf.core.shot_profile_manager.ShotProfileManager
method), 43

mode_stop_for_shots() (mpf.core.shot_profile_manager.ShotProfileManager
method), 43

ModeController (class in mpf.core.mode_controller), 39
monitor_enabled (mpf.core.player.Player attribute), 162
monitor_enabled (mpf.devices.shot.Shot attribute), 86
Motor (class in mpf.devices.motor), 73
MpfBcpTestCase (class in mpf.tests.MpfBcpTestCase),

130
MpfFakeGameTestCase (class in

mpf.tests.MpfFakeGameTestCase), 135
MpfGameTestCase (class in

mpf.tests.MpfGameTestCase), 140
MpfMachineTestCase (class in

mpf.tests.MpfMachineTestCase), 144
MpfTestCase (class in mpf.tests.MpfTestCase), 149
ms_since_change() (mpf.core.switch_controller.SwitchController

method), 46
Multiball (class in mpf.devices.multiball), 74
MultiballLock (class in mpf.devices.multiball_lock), 73

N
name (mpf.core.rgb_color.RGBColor attribute), 163
name_to_rgb() (mpf.core.rgb_color.RGBColor static

method), 164
normalize_hex_string() (mpf.core.utility_functions.Util

static method), 170
notify_device_changes() (mpf.core.device_manager.DeviceManager

method), 31
notify_show_starting() (mpf.core.show_controller.ShowController

method), 44

notify_show_stopping() (mpf.core.show_controller.ShowController
method), 44

O
off() (mpf.devices.led.Led method), 68
off() (mpf.devices.matrix_light.MatrixLight method), 70
on() (mpf.devices.led.Led method), 68
on() (mpf.devices.matrix_light.MatrixLight method), 70
options (mpf.core.machine.MachineController attribute),

37

P
pause() (mpf.core.timer.Timer method), 166
PhysicalDmd (class in mpf.devices.physical_dmd), 75
PhysicalRgbDmd (class in

mpf.devices.physical_rgb_dmd), 75
pick_weighted_random()

(mpf.core.randomizer.Randomizer static
method), 165

PlaceholderManager (class in
mpf.core.placeholder_manager), 41

play() (mpf.config_players.coil_player.CoilPlayer
method), 123

play() (mpf.config_players.event_player.EventPlayer
method), 124

play() (mpf.config_players.flasher_player.FlasherPlayer
method), 124

play() (mpf.config_players.gi_player.GiPlayer method),
125

play() (mpf.config_players.led_player.LedPlayer
method), 125

play() (mpf.config_players.light_player.LightPlayer
method), 126

play() (mpf.config_players.queue_event_player.QueueEventPlayer
method), 126

play() (mpf.config_players.queue_relay_player.QueueRelayPlayer
method), 127

play() (mpf.config_players.random_event_player.RandomEventPlayer
method), 127

play() (mpf.config_players.score_player.ScorePlayer
method), 128

play() (mpf.config_players.show_player.ShowPlayer
method), 128

play() (mpf.config_players.trigger_player.TriggerPlayer
method), 129

Player (class in mpf.core.player), 162
player (mpf.core.mode.Mode attribute), 161
player_add_success() (mpf.modes.game.code.game.Game

method), 98
player_rotate() (mpf.modes.game.code.game.Game

method), 98
player_turn_start() (mpf.core.logic_blocks.LogicBlocks

method), 36
player_turn_start() (mpf.devices.shot.Shot method), 86

206 Index

MPF Documentation Developer Documentation, Release 0.33.49

player_turn_start() (mpf.modes.game.code.game.Game
method), 98

player_turn_stop() (mpf.core.logic_blocks.LogicBlocks
method), 36

player_turn_stop() (mpf.devices.shot.Shot method), 86
player_turn_stop() (mpf.modes.game.code.game.Game

method), 98
Playfield (class in mpf.devices.playfield), 76
PlayfieldTransfer (class in

mpf.devices.playfield_transfer), 76
plugins (mpf.core.machine.MachineController attribute),

37
post() (mpf.core.events.EventManager method), 32
post_async() (mpf.core.events.EventManager method),

32
post_boolean() (mpf.core.events.EventManager method),

33
post_queue() (mpf.core.events.EventManager method),

33
post_queue_async() (mpf.core.events.EventManager

method), 33
post_relay() (mpf.core.events.EventManager method), 33
post_relay_async() (mpf.core.events.EventManager

method), 34
power_off() (mpf.core.machine.MachineController

method), 38
power_off() (mpf.tests.MpfTestCase.TestMachineController

method), 155
process_event_queue() (mpf.core.events.EventManager

method), 34
process_profile_config() (mpf.core.shot_profile_manager.ShotProfileManager

method), 43
process_received_message()

(mpf.platforms.fast.fast.HardwarePlatform
method), 108

process_received_message()
(mpf.platforms.opp.opp.HardwarePlatform
method), 112

process_switch() (mpf.core.switch_controller.SwitchController
method), 46

process_switch_by_num()
(mpf.core.switch_controller.SwitchController
method), 46

process_switch_obj() (mpf.core.switch_controller.SwitchController
method), 46

pulse() (mpf.devices.driver.Driver method), 57
pulse() (mpf.devices.dual_wound_coil.DualWoundCoil

method), 61
pwm32_to_hex_string() (mpf.core.utility_functions.Util

static method), 170
pwm32_to_int() (mpf.core.utility_functions.Util static

method), 170
pwm8_to_hex_string() (mpf.core.utility_functions.Util

static method), 170

pwm8_to_int() (mpf.core.utility_functions.Util static
method), 170

pwm8_to_on_off() (mpf.core.utility_functions.Util static
method), 170

Q
QueueEventPlayer (class in

mpf.config_players.queue_event_player),
126

QueueRelayPlayer (class in
mpf.config_players.queue_relay_player),
126

R
race() (mpf.core.utility_functions.Util static method), 170
random_rgb() (mpf.core.rgb_color.RGBColor static

method), 164
RandomEventPlayer (class in

mpf.config_players.random_event_player),
127

Randomizer (class in mpf.core.randomizer), 164
read_gen2_inp_resp() (mpf.platforms.opp.opp.HardwarePlatform

method), 113
read_gen2_inp_resp_initial()

(mpf.platforms.opp.opp.HardwarePlatform
method), 113

read_matrix_inp_resp() (mpf.platforms.opp.opp.HardwarePlatform
method), 113

read_matrix_inp_resp_initial()
(mpf.platforms.opp.opp.HardwarePlatform
method), 113

receive_local_closed() (mpf.platforms.fast.fast.HardwarePlatform
method), 109

receive_local_open() (mpf.platforms.fast.fast.HardwarePlatform
method), 109

receive_nw_closed() (mpf.platforms.fast.fast.HardwarePlatform
method), 109

receive_nw_open() (mpf.platforms.fast.fast.HardwarePlatform
method), 109

receive_sa() (mpf.platforms.fast.fast.HardwarePlatform
method), 109

reconfigure_driver() (mpf.platforms.opp.opp.HardwarePlatform
method), 113

red (mpf.core.rgb_color.RGBColor attribute), 164
reel_list_to_int() (mpf.devices.score_reel_group.ScoreReelGroup

class method), 80
register() (mpf.core.ball_search.BallSearch method), 158
register_boot_hold() (mpf.core.machine.MachineController

method), 38
register_boot_hold() (mpf.tests.MpfTestCase.TestMachineController

method), 155
register_group() (mpf.devices.shot.Shot method), 86
register_io_board() (mpf.platforms.fast.fast.HardwarePlatform

method), 109

Index 207

MPF Documentation Developer Documentation, Release 0.33.49

register_load_method() (mpf.core.mode_controller.ModeController
method), 40

register_monitor() (mpf.core.machine.MachineController
method), 38

register_monitor() (mpf.tests.MpfTestCase.TestMachineController
method), 155

register_monitorable_device()
(mpf.core.device_manager.DeviceManager
method), 31

register_processor_connection()
(mpf.platforms.fast.fast.HardwarePlatform
method), 109

register_processor_connection()
(mpf.platforms.opp.opp.HardwarePlatform
method), 113

register_profile() (mpf.core.shot_profile_manager.ShotProfileManager
method), 43

register_profiles() (mpf.core.shot_profile_manager.ShotProfileManager
method), 43

register_show() (mpf.core.show_controller.ShowController
method), 44

register_start_method() (mpf.core.mode_controller.ModeController
method), 40

register_stop_method() (mpf.core.mode_controller.ModeController
method), 40

register_switch() (mpf.core.switch_controller.SwitchController
method), 47

release_all() (mpf.devices.ball_hold.BallHold method),
54

release_all_balls() (mpf.devices.ball_lock.BallLock
method), 55

release_ball() (mpf.devices.magnet.Magnet method), 72
release_balls() (mpf.devices.ball_hold.BallHold method),

54
release_balls() (mpf.devices.ball_lock.BallLock method),

55
release_one() (mpf.devices.ball_hold.BallHold method),

54
release_one() (mpf.devices.ball_lock.BallLock method),

55
release_one_if_full() (mpf.devices.ball_hold.BallHold

method), 54
release_one_if_full() (mpf.devices.ball_lock.BallLock

method), 55
relight() (mpf.core.extra_balls.ExtraBallController

method), 35
remaining_space_in_hold()

(mpf.devices.ball_hold.BallHold method),
54

remaining_space_in_lock()
(mpf.devices.ball_lock.BallLock method),
55

remaining_virtual_space_in_lock
(mpf.devices.multiball_lock.MultiballLock

attribute), 74
remove() (mpf.core.delays.DelayManager method), 174
remove_active_profile() (mpf.devices.shot.Shot method),

86
remove_active_profile() (mpf.devices.shot_group.ShotGroup

method), 84
remove_from_bank() (mpf.devices.drop_target.DropTarget

method), 60
remove_from_group() (mpf.devices.achievement.Achievement

method), 50
remove_from_stack_by_key() (mpf.devices.led.Led

method), 68
remove_from_stack_by_key()

(mpf.devices.matrix_light.MatrixLight
method), 71

remove_from_stack_by_mode() (mpf.devices.led.Led
method), 68

remove_from_stack_by_mode()
(mpf.devices.matrix_light.MatrixLight
method), 71

remove_handler() (mpf.core.events.EventManager
method), 34

remove_handler() (mpf.devices.gi.Gi method), 65
remove_handler() (mpf.devices.matrix_light.MatrixLight

method), 71
remove_handler() (mpf.devices.switch.Switch method),

87
remove_handler_by_event()

(mpf.core.events.EventManager method),
34

remove_handler_by_key()
(mpf.core.events.EventManager method),
34

remove_handlers_by_keys()
(mpf.core.events.EventManager method),
34

remove_incoming_ball() (mpf.devices.ball_device.ball_device.BallDevice
method), 52

remove_incoming_ball() (mpf.devices.playfield.Playfield
method), 78

remove_key() (mpf.core.data_manager.DataManager
method), 172

remove_key() (mpf.tests.TestDataManager.TestDataManager
method), 154

remove_machine_var() (mpf.core.machine.MachineController
method), 38

remove_machine_var() (mpf.tests.MpfTestCase.TestMachineController
method), 155

remove_machine_var_search()
(mpf.core.machine.MachineController
method), 38

remove_machine_var_search()
(mpf.tests.MpfTestCase.TestMachineController
method), 155

208 Index

MPF Documentation Developer Documentation, Release 0.33.49

remove_monitor() (mpf.core.switch_controller.SwitchController
method), 47

remove_profile_by_mode() (mpf.devices.shot.Shot
method), 86

remove_start_method() (mpf.core.mode_controller.ModeController
method), 40

remove_stop_method() (mpf.core.mode_controller.ModeController
method), 41

remove_switch_handler()
(mpf.core.switch_controller.SwitchController
method), 47

remove_switch_handler_by_key()
(mpf.core.switch_controller.SwitchController
method), 47

replace_handler() (mpf.core.events.EventManager
method), 34

request_ball() (mpf.devices.ball_device.ball_device.BallDevice
method), 52

request_player_add() (mpf.modes.game.code.game.Game
method), 98

request_to_start_game() (mpf.core.ball_controller.BallController
method), 29

request_to_start_game() (mpf.core.ball_search.BallSearch
method), 158

reset() (mpf.core.delays.DelayManager method), 174
reset() (mpf.core.machine.MachineController method),

39
reset() (mpf.core.timer.Timer method), 166
reset() (mpf.devices.achievement.Achievement method),

50
reset() (mpf.devices.ball_hold.BallHold method), 54
reset() (mpf.devices.ball_lock.BallLock method), 55
reset() (mpf.devices.diverter.Diverter method), 59
reset() (mpf.devices.drop_target.DropTarget method), 61
reset() (mpf.devices.drop_target.DropTargetBank

method), 60
reset() (mpf.devices.extra_ball.ExtraBall method), 62
reset() (mpf.devices.magnet.Magnet method), 72
reset() (mpf.devices.motor.Motor method), 73
reset() (mpf.devices.multiball.Multiball method), 74
reset() (mpf.devices.servo.Servo method), 83
reset() (mpf.devices.shot.Shot method), 86
reset() (mpf.devices.shot_group.ShotGroup method), 84
reset() (mpf.tests.MpfTestCase.TestMachineController

method), 156
reset_all_counts() (mpf.devices.multiball_lock.MultiballLock

method), 74
reset_count_for_current_player()

(mpf.devices.multiball_lock.MultiballLock
method), 74

reset_timer() (mpf.core.ball_search.BallSearch method),
158

reset_warnings() (mpf.modes.tilt.code.tilt.Tilt method),
105

restart() (mpf.core.timer.Timer method), 166
restart_on_next_ball (mpf.core.mode.Mode attribute),

161
result_of_start_request() (mpf.modes.attract.code.attract.Attract

method), 89
rgb (mpf.core.rgb_color.RGBColor attribute), 164
rgb_to_hex() (mpf.core.rgb_color.RGBColor static

method), 164
RGBColor (class in mpf.core.rgb_color), 163
rotate() (mpf.devices.shot_group.ShotGroup method), 84
rotate_left() (mpf.devices.achievement_group.AchievementGroup

method), 49
rotate_left() (mpf.devices.shot_group.ShotGroup

method), 84
rotate_right() (mpf.devices.achievement_group.AchievementGroup

method), 49
rotate_right() (mpf.devices.shot_group.ShotGroup

method), 84
run() (mpf.core.machine.MachineController method), 39
run() (mpf.tests.MpfTestCase.TestMachineController

method), 156
run_now() (mpf.core.delays.DelayManager method), 174

S
save() (mpf.core.file_manager.FileManager static

method), 159
save_all() (mpf.core.data_manager.DataManager

method), 172
save_key() (mpf.core.data_manager.DataManager

method), 172
save_key() (mpf.tests.TestDataManager.TestDataManager

method), 154
scale_accelerometer_to_g()

(mpf.platforms.p3_roc.HardwarePlatform
class method), 115

schedule_deactivation() (mpf.devices.diverter.Diverter
method), 59

ScorePlayer (class in mpf.config_players.score_player),
127

ScoreReel (class in mpf.devices.score_reel), 81
ScoreReelGroup (class in mpf.devices.score_reel_group),

78
scriptlets (mpf.core.machine.MachineController at-

tribute), 37
select() (mpf.devices.achievement.Achievement method),

50
select_random_achievement()

(mpf.devices.achievement_group.AchievementGroup
method), 49

send() (mpf.core.bcp.bcp.Bcp method), 29
send_cmd_and_wait_for_response()

(mpf.platforms.spike.spike.SpikePlatform
method), 120

Index 209

MPF Documentation Developer Documentation, Release 0.33.49

send_cmd_async() (mpf.platforms.spike.spike.SpikePlatform
method), 120

send_cmd_raw() (mpf.platforms.spike.spike.SpikePlatform
method), 120

send_cmd_sync() (mpf.platforms.spike.spike.SpikePlatform
method), 121

send_to_processor() (mpf.platforms.opp.opp.HardwarePlatform
method), 113

Service (class in mpf.modes.service.code.service), 102
ServiceController (class in mpf.core.service_controller),

41
Servo (class in mpf.devices.servo), 82
set_color_correction_profile() (mpf.devices.led.Led

method), 68
set_default_platform() (mpf.core.machine.MachineController

method), 39
set_default_platform() (mpf.tests.MpfTestCase.TestMachineController

method), 156
set_destination_value() (mpf.devices.score_reel.ScoreReel

method), 82
set_eject_state() (mpf.devices.ball_device.ball_device.BallDevice

method), 53
set_in_dict() (mpf.core.utility_functions.Util static

method), 170
set_machine_var() (mpf.core.machine.MachineController

method), 39
set_machine_var() (mpf.tests.MpfTestCase.TestMachineController

method), 156
set_mode_state() (mpf.core.mode_controller.ModeController

method), 41
set_pulse_on_hit_and_enable_and_release_and_disable_rule()

(mpf.devices.driver.Driver method), 57
set_pulse_on_hit_and_enable_and_release_and_disable_rule()

(mpf.platforms.fast.fast.HardwarePlatform
method), 109

set_pulse_on_hit_and_enable_and_release_and_disable_rule()
(mpf.platforms.opp.opp.HardwarePlatform
method), 113

set_pulse_on_hit_and_enable_and_release_and_disable_rule()
(mpf.platforms.snux.HardwarePlatform
method), 119

set_pulse_on_hit_and_enable_and_release_and_disable_rule()
(mpf.platforms.spike.spike.SpikePlatform
method), 121

set_pulse_on_hit_and_enable_and_release_and_disable_rule()
(mpf.platforms.virtual.HardwarePlatform
method), 122

set_pulse_on_hit_and_enable_and_release_rule()
(mpf.devices.driver.Driver method), 57

set_pulse_on_hit_and_enable_and_release_rule()
(mpf.platforms.fast.fast.HardwarePlatform
method), 109

set_pulse_on_hit_and_enable_and_release_rule()
(mpf.platforms.opp.opp.HardwarePlatform

method), 114
set_pulse_on_hit_and_enable_and_release_rule()

(mpf.platforms.snux.HardwarePlatform
method), 119

set_pulse_on_hit_and_enable_and_release_rule()
(mpf.platforms.spike.spike.SpikePlatform
method), 121

set_pulse_on_hit_and_enable_and_release_rule()
(mpf.platforms.virtual.HardwarePlatform
method), 122

set_pulse_on_hit_and_release_rule()
(mpf.devices.driver.Driver method), 57

set_pulse_on_hit_and_release_rule()
(mpf.platforms.fast.fast.HardwarePlatform
method), 109

set_pulse_on_hit_and_release_rule()
(mpf.platforms.opp.opp.HardwarePlatform
method), 114

set_pulse_on_hit_and_release_rule()
(mpf.platforms.snux.HardwarePlatform
method), 119

set_pulse_on_hit_and_release_rule()
(mpf.platforms.spike.spike.SpikePlatform
method), 121

set_pulse_on_hit_and_release_rule()
(mpf.platforms.virtual.HardwarePlatform
method), 122

set_pulse_on_hit_rule() (mpf.devices.driver.Driver
method), 57

set_pulse_on_hit_rule() (mpf.platforms.fast.fast.HardwarePlatform
method), 109

set_pulse_on_hit_rule() (mpf.platforms.opp.opp.HardwarePlatform
method), 114

set_pulse_on_hit_rule() (mpf.platforms.snux.HardwarePlatform
method), 119

set_pulse_on_hit_rule() (mpf.platforms.spike.spike.SpikePlatform
method), 121

set_pulse_on_hit_rule() (mpf.platforms.virtual.HardwarePlatform
method), 122

set_rollover_reel() (mpf.devices.score_reel.ScoreReel
method), 82

set_rollover_reels() (mpf.devices.score_reel_group.ScoreReelGroup
method), 80

set_setting_value() (mpf.core.settings_controller.SettingsController
method), 42

set_state() (mpf.core.switch_controller.SwitchController
method), 47

set_tick_interval() (mpf.core.timer.Timer method), 166
set_value() (mpf.devices.score_reel_group.ScoreReelGroup

method), 80
SettingsController (class in mpf.core.settings_controller),

42
setup_eject_chain() (mpf.devices.ball_device.ball_device.BallDevice

method), 53

210 Index

MPF Documentation Developer Documentation, Release 0.33.49

setup_eject_chain_next_hop()
(mpf.devices.ball_device.ball_device.BallDevice
method), 53

setup_player_controlled_eject()
(mpf.devices.ball_device.ball_device.BallDevice
method), 53

shortDescription() (mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 135

shortDescription() (mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 139

shortDescription() (mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 144

shortDescription() (mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 149

shortDescription() (mpf.tests.MpfTestCase.MpfTestCase
method), 153

Shot (class in mpf.devices.shot), 85
ShotGroup (class in mpf.devices.shot_group), 83
ShotProfileManager (class in

mpf.core.shot_profile_manager), 42
ShowController (class in mpf.core.show_controller), 43
ShowPlayer (class in mpf.config_players.show_player),

128
skipTest() (mpf.tests.MpfBcpTestCase.MpfBcpTestCase

method), 135
skipTest() (mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase

method), 139
skipTest() (mpf.tests.MpfGameTestCase.MpfGameTestCase

method), 144
skipTest() (mpf.tests.MpfMachineTestCase.MpfMachineTestCase

method), 149
skipTest() (mpf.tests.MpfTestCase.MpfTestCase

method), 153
slam_tilt() (mpf.modes.tilt.code.tilt.Tilt method), 105
SmartMatrix (class in mpf.platforms.smartmatrix), 118
SpikePlatform (class in mpf.platforms.spike.spike), 120
stack (mpf.devices.led.Led attribute), 68
stack (mpf.devices.matrix_light.MatrixLight attribute),

71
start() (mpf.core.ball_search.BallSearch method), 158
start() (mpf.core.mode.Mode method), 161
start() (mpf.core.timer.Timer method), 167
start() (mpf.devices.achievement.Achievement method),

50
start() (mpf.devices.multiball.Multiball method), 75
start() (mpf.modes.attract.code.attract.Attract method),

89
start() (mpf.modes.bonus.code.bonus.Bonus method), 91
start() (mpf.modes.carousel.code.carousel.Carousel

method), 93
start() (mpf.modes.credits.code.credits.Credits method),

95
start() (mpf.modes.game.code.game.Game method), 98

start() (mpf.modes.high_score.code.high_score.HighScore
method), 100

start() (mpf.modes.match.code.match.Match method),
102

start() (mpf.modes.service.code.service.Service method),
104

start() (mpf.modes.tilt.code.tilt.Tilt method), 105
start_button_pressed() (mpf.modes.attract.code.attract.Attract

method), 89
start_button_released() (mpf.modes.attract.code.attract.Attract

method), 89
start_or_add_a_ball() (mpf.devices.multiball.Multiball

method), 75
start_selected() (mpf.devices.achievement_group.AchievementGroup

method), 49
start_service() (mpf.core.service_controller.ServiceController

method), 41
start_two_player_game()

(mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 139

start_two_player_game()
(mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 144

state (mpf.devices.achievement.Achievement attribute),
50

state (mpf.devices.ball_device.ball_device.BallDevice at-
tribute), 53

state (mpf.devices.combo_switch.ComboSwitch at-
tribute), 58

state (mpf.devices.switch.Switch attribute), 87
stop() (mpf.core.ball_search.BallSearch method), 158
stop() (mpf.core.machine.MachineController method), 39
stop() (mpf.core.mode.Mode method), 161
stop() (mpf.core.timer.Timer method), 167
stop() (mpf.devices.achievement.Achievement method),

50
stop() (mpf.devices.ball_device.ball_device.BallDevice

method), 53
stop() (mpf.devices.multiball.Multiball method), 75
stop() (mpf.modes.attract.code.attract.Attract method), 90
stop() (mpf.modes.bonus.code.bonus.Bonus method), 91
stop() (mpf.modes.carousel.code.carousel.Carousel

method), 93
stop() (mpf.modes.credits.code.credits.Credits method),

95
stop() (mpf.modes.game.code.game.Game method), 98
stop() (mpf.modes.high_score.code.high_score.HighScore

method), 100
stop() (mpf.modes.match.code.match.Match method),

102
stop() (mpf.modes.service.code.service.Service method),

104
stop() (mpf.modes.tilt.code.tilt.Tilt method), 106

Index 211

MPF Documentation Developer Documentation, Release 0.33.49

stop() (mpf.platforms.fast.fast.HardwarePlatform
method), 109

stop() (mpf.platforms.i2c_servo_controller.HardwarePlatform
method), 110

stop() (mpf.platforms.openpixel.HardwarePlatform
method), 111

stop() (mpf.platforms.opp.opp.HardwarePlatform
method), 114

stop() (mpf.platforms.pololu_maestro.HardwarePlatform
method), 117

stop() (mpf.platforms.smartmatrix.SmartMatrix method),
118

stop() (mpf.platforms.snux.HardwarePlatform method),
119

stop() (mpf.platforms.spike.spike.SpikePlatform
method), 121

stop() (mpf.platforms.virtual.HardwarePlatform method),
122

stop() (mpf.tests.MpfTestCase.TestMachineController
method), 156

stop_service() (mpf.core.service_controller.ServiceController
method), 42

string_to_class() (mpf.core.utility_functions.Util static
method), 170

string_to_gain() (mpf.core.utility_functions.Util static
method), 170

string_to_list() (mpf.core.utility_functions.Util static
method), 171

string_to_lowercase_list()
(mpf.core.utility_functions.Util static method),
171

string_to_ms() (mpf.core.utility_functions.Util static
method), 171

string_to_rgb() (mpf.core.rgb_color.RGBColor static
method), 164

string_to_secs() (mpf.core.utility_functions.Util static
method), 171

subtract() (mpf.core.timer.Timer method), 167
sw_flip() (mpf.devices.flipper.Flipper method), 64
sw_release() (mpf.devices.flipper.Flipper method), 64
Switch (class in mpf.devices.switch), 87
SwitchController (class in mpf.core.switch_controller),

44
SwitchPlayer (class in mpf.plugins.switch_player), 47

T
TestDataManager (class in mpf.tests.TestDataManager),

153
TestMachineController (class in mpf.tests.MpfTestCase),

154
tick() (mpf.devices.score_reel_group.ScoreReelGroup

method), 81
tick() (mpf.platforms.p3_roc.HardwarePlatform method),

116

tick() (mpf.platforms.p_roc.HardwarePlatform method),
117

tick() (mpf.platforms.snux.HardwarePlatform method),
119

Tilt (class in mpf.modes.tilt.code.tilt), 104
tilt() (mpf.modes.tilt.code.tilt.Tilt method), 106
tilt_settle_ms_remaining() (mpf.modes.tilt.code.tilt.Tilt

method), 106
tilt_warning() (mpf.modes.tilt.code.tilt.Tilt method), 106
TimedSwitch (class in mpf.devices.timed_switch), 87
Timer (class in mpf.core.timer), 165
timer_complete() (mpf.core.timer.Timer method), 167
timer_start() (mpf.devices.ball_save.BallSave method),

56
toggle_credit_play() (mpf.modes.credits.code.credits.Credits

method), 95
transfer() (mpf.devices.playfield_transfer.PlayfieldTransfer

method), 76
TriggerPlayer (class in

mpf.config_players.trigger_player), 128

U
unblock() (mpf.core.ball_search.BallSearch method), 158
unexpected_ball_received()

(mpf.devices.ball_device.ball_device.BallDevice
method), 53

unexpected_ball_received()
(mpf.devices.playfield.Playfield method),
78

unittest_verbosity() (mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 135

unittest_verbosity() (mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 140

unittest_verbosity() (mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 144

unittest_verbosity() (mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 149

unittest_verbosity() (mpf.tests.MpfTestCase.MpfTestCase
method), 153

unlight() (mpf.devices.score_reel_group.ScoreReelGroup
method), 81

update() (mpf.devices.physical_dmd.PhysicalDmd
method), 75

update() (mpf.devices.physical_rgb_dmd.PhysicalRgbDmd
method), 76

update() (mpf.platforms.smartmatrix.SmartMatrix
method), 118

update_acceleration() (mpf.devices.accelerometer.Accelerometer
method), 48

update_current_state_name() (mpf.devices.shot.Shot
method), 86

update_hw_light() (mpf.devices.matrix_light.MatrixLight
method), 72

212 Index

MPF Documentation Developer Documentation, Release 0.33.49

update_incand() (mpf.platforms.opp.opp.HardwarePlatform
method), 114

update_leds() (mpf.devices.led.Led class method), 69
update_leds() (mpf.platforms.fast.fast.HardwarePlatform

method), 109
update_matrix_lights() (mpf.devices.matrix_light.MatrixLight

class method), 72
update_profile() (mpf.devices.shot.Shot method), 86
update_switches_from_hw()

(mpf.core.switch_controller.SwitchController
method), 47

Util (class in mpf.core.utility_functions), 167

V
validate() (mpf.devices.score_reel_group.ScoreReelGroup

method), 81
validate_coil_overwrite_section()

(mpf.platforms.virtual.HardwarePlatform
method), 123

validate_coil_section() (mpf.platforms.snux.HardwarePlatform
method), 120

validate_coil_section() (mpf.platforms.virtual.HardwarePlatform
method), 123

validate_config_entry() (mpf.config_players.queue_event_player.QueueEventPlayer
method), 126

validate_config_entry() (mpf.config_players.queue_relay_player.QueueRelayPlayer
method), 127

validate_config_entry() (mpf.config_players.random_event_player.RandomEventPlayer
method), 127

validate_config_entry() (mpf.config_players.score_player.ScorePlayer
method), 128

validate_machine_config_section()
(mpf.core.machine.MachineController
method), 39

validate_machine_config_section()
(mpf.tests.MpfTestCase.TestMachineController
method), 156

validate_switch_overwrite_section()
(mpf.platforms.fast.fast.HardwarePlatform
method), 110

validate_switch_overwrite_section()
(mpf.platforms.virtual.HardwarePlatform
method), 123

validate_switch_section()
(mpf.platforms.virtual.HardwarePlatform
method), 123

verify_switches() (mpf.core.switch_controller.SwitchController
method), 47

verify_system_info() (mpf.core.machine.MachineController
method), 39

verify_system_info() (mpf.tests.MpfTestCase.TestMachineController
method), 156

vers_resp() (mpf.platforms.opp.opp.HardwarePlatform
method), 114

W
wait_for_any_event() (mpf.core.events.EventManager

method), 35
wait_for_any_switch() (mpf.core.switch_controller.SwitchController

method), 47
wait_for_asset_load() (mpf.core.assets.AsyncioSyncAssetManager

method), 27
wait_for_event() (mpf.core.events.EventManager

method), 35
wait_for_ready_to_receive()

(mpf.devices.ball_device.ball_device.BallDevice
method), 53

wait_for_ready_to_receive()
(mpf.devices.playfield.Playfield static method),
78

wait_for_switch() (mpf.core.switch_controller.SwitchController
method), 47

warning_log() (mpf.core.ball_search.BallSearch
method), 158

warning_log() (mpf.core.data_manager.DataManager
method), 172

warning_log() (mpf.core.delays.DelayManager method),
174

warning_log() (mpf.core.logging.LogMixin method), 159
warning_log() (mpf.core.mode.Mode method), 161
warning_log() (mpf.core.timer.Timer method), 167
warning_log() (mpf.modes.attract.code.attract.Attract

method), 90
warning_log() (mpf.modes.bonus.code.bonus.Bonus

method), 92
warning_log() (mpf.modes.carousel.code.carousel.Carousel

method), 93
warning_log() (mpf.modes.credits.code.credits.Credits

method), 95
warning_log() (mpf.modes.game.code.game.Game

method), 99
warning_log() (mpf.modes.high_score.code.high_score.HighScore

method), 100
warning_log() (mpf.modes.match.code.match.Match

method), 102
warning_log() (mpf.modes.service.code.service.Service

method), 104
warning_log() (mpf.modes.tilt.code.tilt.Tilt method), 106
warning_log() (mpf.tests.MpfBcpTestCase.MockBcpClient

method), 130
warning_log() (mpf.tests.MpfTestCase.TestMachineController

method), 156
warning_log() (mpf.tests.TestDataManager.TestDataManager

method), 154
write_color_to_hw_driver() (mpf.devices.led.Led

method), 69

Index 213

	Understanding the MPF codebase
	Adding custom code to your machine
	API Reference
	Writing Tests
	Extending, Adding to, and Enhancing MPF
	BCP Protocol
	Index
	Overview & Tour of MPF code
	Adding custom code to your game
	API Reference
	Automated Testing
	Extending MPF
	BCP Protocol Specification
	Method & Class Index

