
MPF Documentation Developer
Documentation

Release 0.50.22

The Mission Pinball Framework Team

Dec 20, 2018

DEVELOPER DOCUMENTATION

1 Understanding the MPF codebase 3

2 Adding custom code to your machine 5

3 API Reference 7

4 Writing Tests 9

5 Extending, Adding to, and Enhancing MPF 11

6 BCP Protocol 13

7 Index 15
7.1 Overview & Tour of MPF code . 15
7.2 Adding custom code to your game . 18
7.3 API Reference . 26
7.4 Automated Testing . 219
7.5 Extending MPF . 224
7.6 BCP Protocol Specification . 226
7.7 Method & Class Index . 240

i

ii

MPF Documentation Developer Documentation, Release 0.50.22

This is the developer documentation for the Mission Pinball Framework (MPF), version 0.50. Click the “Read the
Docs” link in the lower left corner for other versions & downloads.

This documentation is for people who want to want to add custom Python code & game logic to their machine and for
people who want to contribute to MPF itself.

Note: This is DEVELOPER documentation, not general USER documentation!

This documentation is for people writing custom Python code for MPF. If you’re a general user of MPF, read the MPF
User Documentation instead.

This developer documentation is broken into several sections:

DEVELOPER DOCUMENTATION 1

http://missionpinball.org
http://docs.missionpinball.org
http://docs.missionpinball.org

MPF Documentation Developer Documentation, Release 0.50.22

2 DEVELOPER DOCUMENTATION

CHAPTER 1

Understanding the MPF codebase

• Overview & Tour of MPF code

• MPF Files & Modules

• How MPF installs itself

• Understanding the MPF boot up / start process

• MPF’s divergence for pure YAML

3

MPF Documentation Developer Documentation, Release 0.50.22

4 Chapter 1. Understanding the MPF codebase

CHAPTER 2

Adding custom code to your machine

• Adding custom code to your game

• How to add machine-wide custom code

• How to add custom Python code to a game mode

5

MPF Documentation Developer Documentation, Release 0.50.22

6 Chapter 2. Adding custom code to your machine

CHAPTER 3

API Reference

• Core Components

• Devices

• Modes

• Config Players

• Hardware Platforms

• Miscellaneous Components

• Testing Class API

7

MPF Documentation Developer Documentation, Release 0.50.22

8 Chapter 3. API Reference

CHAPTER 4

Writing Tests

• Automated Testing

• How to run MPF unittests

• Writing Unit Tests for MPF

• Writing Custom Tests for your Machine

• Fuzz Testing

9

MPF Documentation Developer Documentation, Release 0.50.22

10 Chapter 4. Writing Tests

CHAPTER 5

Extending, Adding to, and Enhancing MPF

• Extending MPF

• Setting up your MPF Dev Environment

• Writing Plugins for MPF

• Developing your own hardware interface for MPF

11

MPF Documentation Developer Documentation, Release 0.50.22

12 Chapter 5. Extending, Adding to, and Enhancing MPF

CHAPTER 6

BCP Protocol

• BCP Protocol Specification

13

MPF Documentation Developer Documentation, Release 0.50.22

14 Chapter 6. BCP Protocol

CHAPTER 7

Index

• We have an index which lists all the classes, methods, and attributes in MPF across the board.

7.1 Overview & Tour of MPF code

This guide provides a general overview of the MPF and MPF-MC codebase.

7.1.1 MPF Files & Modules

The MPF packages contains the following folders:

• /build_scripts: Scripts which can be used to locally build & test MPF packages and wheels

• /docs: The Sphinx-based developer docs that you’re reading now

• /mpf: The actual mpf package that’s copied to your machine when MPF is installed

• /tools: A few random tools

The MPF package

The MPF package (e.g. the /mpf subfolder which is copied to your install location when you install MPF) contains
the following folders:

• /assets: Contains the asset classes used in MPF (the “shows” asset class)

• /commands: Modules for the command-line interface for MPF

• /config_players: Modules for the built-in config_players

• /core: Core MPF system modules

• /devices: Device modules

• /exceptions: MPF exception classes

15

MPF Documentation Developer Documentation, Release 0.50.22

• /file_interfaces: MPF file interfaces (current just YAML, could support more in the future)

• /migrator: MPF Migrator files

• /modes: Code for built-in modes (game, attract, tilt, credits, etc.)

• /platforms: Hardware platform modules

• /plugins: Built-in MPF plugins

• /tests: MPF unit tests

It also includes the following files in the package root:

• __init__.py: Makes the MPF folder a package

• __main__.py: Allows the MPF commands to run

• _version.py: Contains version strings used throughout MPF for the current version

• mpfconfig.yaml: The “base” machine config file that is used for all machines (unless this is specifically
overridden via the command-line options)

7.1.2 How MPF installs itself

This guide explains what happens when MPF is installed.

MPF contains a setup.py file in the root of the MPF repository. This is the file that’s called by pip when MPF is
installed. (You can also install MPF without using pip by running python3 setup.py from the root folder.)

Dependencies

MPF requires Python 3.4 or newer. In our installation instructions, we also recommend that users install/update the
following Python packages to their latest versions:

• pip

• setuptools (for Linux & Mac)

• Cython 0.24.1 (for Linux & Mac)

The additional packages for Linux & Mac are used because MPF-MC is actually compiled on built on those platforms.
For Windows we have pre-built wheels, so compiling is not necessary.

MPF has the following additional dependencies which are specified in the setup.py file and automatically installed
when MPF is installed.

• ruamel.yaml >=0.10,<0.11: Used for reading & writing YAML files.

• pyserial >= 3.2.0: Used for serial communication with several types of hardware

• pyserial-asyncio >= 0.3: Also used for serial communication

• typing Used for type-checking & type hinting.

Note that some of these dependencies will install their own dependencies.

The setup.py file also specifies a console_scripts entry point called mpf. This is what lets the user type mpf from the
command environment to launch MPF.

16 Chapter 7. Index

http://python-packaging.readthedocs.io/en/latest/command-line-scripts.html#the-console-scripts-entry-point

MPF Documentation Developer Documentation, Release 0.50.22

7.1.3 Understanding the MPF boot up / start process

A user runs “mpf” from the command line, which is registered as a console script entry point when MPF is installed.
That entry point calls the function run_from_command_line() in mpf.commands.__init__ module.

That module parses the command line arguments, figures out the machine path that’s being executed, and figures out
which MPF command is being called. (MPF commands are things like “both” or “mc”.)

Some commands are built-in to MPF (in the mpf/commands folder), and others are registered as MPF via plugin
entry points when other packages are installed. (For example, MPF-MC registers the “mc” command, the MPF
Monitor registers the “monitor” command, etc.)

When you launch MPF (via mpf game or just plain mpf), the mpf.commands.game module’s Command class
is instantiated. This class processes the command line arguments, sets up logging, and then creates an instance of the
mpf.core.machine.MachineController class.

(This class is run inside a try: block, with all exceptions captured and then sent to the log. This is how MPF is able
to capture crashes and stack traces into the log file when it crashes.

The Machine Controller

The Machine Controller can be thought of as the main “kernel” of MPF. It does a lot of things, including:

• Loading, merging, & validating the config files

• Setting up the clock

• Loading platform modules (based on what’s used in the configs)

• Loading MPF core modules

• Loading MPF plugins

• Loading scriptlets and custom machine code

• Stepping through the initialization and reset phases

7.1.4 MPF’s divergence for pure YAML

MPF uses the YAML file format for config and show files. That said, MPF diverges from the pure YAML 1.2 specifi-
cation for unquoted strings in a few ways. Those are cases where YAML guesses which data type the value is which
led to problems/confusion in the past:

Values beginning with “+” are strings

The YAML spec essentially ignores a leading plus sign, so a value +1 would be read in as the integer 1.
However MPF needs to differentiate between +1 and 1 since the plus sign is used to mean the value is
a delta in certain situations, so MPF’s YAML interfaces will process any numeric values with a leading
plus sign as strings.

Values beginning with a leading “0” are strings

The YAML spec will process values that are only digits 0-7 with leading zeros as octals. However MPF
could have color values like 050505 which should be read as strings. So the MPF YAML interface
processes any value with at least 3 digits and leading zeros as strings.

“On” and “Off” values are strings

The YAML spec defines on and off values as bools. But many MPF users create show names called
“on” and “off”, so MPF’s YAML processor interprets those as strings. (True, False, Yes, and No are still
processes as bools.)

7.1. Overview & Tour of MPF code 17

http://www.yaml.org/spec/1.2/spec.html
http://www.yaml.org/spec/1.2/spec.html

MPF Documentation Developer Documentation, Release 0.50.22

Values with only digits and “e” are strings

The YAML spec will process a value like 123e45 as “123 exponent 45”. Since those could be hex color
codes, MPF’s YAML interface processes values that are all digits with a single “e” character as strings.

7.2 Adding custom code to your game

While one of the goals of MPF is to allow you to do as much of your game’s configuration as possible with the config
files, we recognize that many people will want to mix in some custom code to their machines.

Fortunately that’s easy to do, and you don’t have to “hack” MPF or break anything to make it happen!

The amount of custom code you use is up to you, depending on your personal preferences, your comfort with Python,
and what exactly you want to do with your machine.

Some people will use the config files for 99% of their machine, and only add a little custom code here and there.
Others will only want to use the configs for the “basic” stuff and then write all their game logic in Python. Either
option is fine with us!

When you decide that you want to add some custom Python code into your game, there are three ways you can do this:

• Mode-specific code, which allows you to write custom Python code which is only active when a particular game
mode is active.

• Machine-wide code, useful for dealing with custom hardware, like the crane in Demolition Man.

7.2.1 How to add custom Python code to a game mode

The easiest and most common way to add custom Python code into your MPF game is to add a code module to a mode
folder. That lets you run code when that mode is active and helps you break up any custom code you write per mode.

This “mode code” (as we call it) has access to the full MPF API. You can post events, register event handlers which
run custom things when events are posted, access device state and control devices, read and set player variables, post
slides. . . really anything MPF can do, you can do.

Here’s how you get started with custom mode code:

1. Create the module (file) to hold you code

First, go into the folder where you want to create your custom code, and add a “code” folder to that mode’s folder.
Then inside that folder, create a file (we usually give this file the same name as the mode) with a .py extension.

For example, if you wanted to create custom code for your base mode, it would look like this:

18 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

2. Open up the new Python file you just created

Next, open the new mode code Python file you just created and add the bare minimum, which would look like this:

from mpf.core.mode import Mode

class Base(Mode):
pass

MPF includes a Mode class which acts as the base class for every mode that runs in a game. That base class lives in
the MPF package at mpf.core.mode. You can see it online in GitHub here.

Notice that we named our custom class Base. You can name it whatever you want.

3. Update your mode config file to use the custom code

Once you create your custom mode code, you need to tell MPF that this mode uses custom code instead of just the
built-in code.

To do this, add a code: entry into the mode config file for the mode where you’re adding custom code. So in this
case, that would be in the /modes/base/config/base.yaml file, like this:

mode:
start_events: ball_starting
priority: 100
code: base.Base

Note that the value for the code: section is the name of the Python module (the file), then a dot, then the name of the
class from that file. So in this case, that’s base.Base.

4. Run your game!

At this point you should be able to run your game and nothing should happen. This is good, because if it doesn’t crash,
that means you did everything right. :) Of course nothing special happens because you didn’t actually add any code to
your custom mode code, so you won’t see anything different.

7.2. Adding custom code to your game 19

https://github.com/missionpinball/mpf/blob/dev/mpf/core/mode.py

MPF Documentation Developer Documentation, Release 0.50.22

5. Add some custom methods to do things

You can look at the Mode base class (the link from GitHub from earlier) to see what the base Mode class does.
However, we have created a few “convenience” methods that you can use. They are:

mode_init Called once when MPF is starting up

mode_start Called every time the mode starts, just after the mode_<name>_started event is posted.

mode_stop Called every time the mode stops, just before the mode_<name>_stopping event is posted.

add_mode_event_handler This is the same as the main add_event_handler() method from the
Event Manager, except since it’s mode-specific it will also automatically remove any event handlers
that you registered when the mode stops. (If you want to register event handlers that are always
watching for events even when the mode is not running, you can use the regular self.machine.
mode.add_handler() method.

You don’t have to use all of these if you don’t want to.

Also, modes have additional convenience attributes you can use within your mode code:

self.config A link to the config dictionary for the mode’s config file.

self.priority The priority the mode is running at. (Don’t change this. Just read it.)

self.delay An instance of the delay manager you can use to set delayed callbacks for this mode. Any
active ones will be automatically removed when the mode ends.

self.player A link to the current player object that’s automatically updated when the player changes. This
will be None if the mode is running outside of a game.

self.active A boolean (True/False) value you can query to see if the mode is running.

6. Example usage

Here’s an example of some mode code in use. This example is just a bunch of random things, but again, since you’re
writing code here, the sky’s the limit! Seriously you could do all your game logic in mode code and not use the MPF
configs at all if you wanted to.

from mpf.core.mode import Mode

class Base(Mode):

def mode_init(self):
print("My custom mode code is being initialized")

def mode_start(self, **kwargs):
The mode_start method needs **kwargs because some events that
start modes pass additional parameters

print("My custom mode code is starting")

call a delay in 5 seconds
self.delay.add(5000, self.my_callback)

what player are we?
print(self.player.number)

what's the player's score?

(continues on next page)

20 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

(continued from previous page)

print('Score: {}'.format(self.player.score))

self.add_mode_event_handler('player_score', self.player_score_change)

turn LED "led01" red
self.machine.leds.led01.color('red')

def my_callback(self):
print("My delayed call was just called!")

def player_score_change(self, **kwargs):
print("The new player's score is {}".format(self.player.score))

def mode_stop(self, **kwargs):
The mode_stop method needs **kwargs because some events that
stop modes pass additional parameters

print("My custom mode code is stopping")

You can use the API reference (or just look at the source code) to see what options exist. Really you can do anything
you want.

7.2.2 How to add machine-wide custom code

MPF contains a “Scriptlet” concept which lets you add custom code to your game.

Scriptlets are Python modules that run at the “root” of your game. You can use them to do anything you want.

Note that MPF also has the ability to run custom mode code which is code that is associated with a certain game mode
and is generally only active when the mode it’s in is active. So if you just want to write your own custom game logic,
you’ll probably use mode code.

Scriptlets, on the other hand, are sort of “machine-level” custom code. Scriptlets are nice if you have some kind
of custom device type that doesn’t match up to any of MPF’s built in devices. The elevator and claw unloader in
Demolition Man is a good example, and what we’ll use here.

(You can read about how to download and run Demo Man in the example games section section of the MPF User
Documentation.)

Here’s how to create a scriptlet:

1. Create your scriptlet file

First, add a scriptlets folder to your machine folder. Then inside there, create the Python file that will hold your
scriptlet. You can name this file whatever you want, just remember the name for the next step.

In the Demo Man example, it looks like this:

7.2. Adding custom code to your game 21

http://docs.missionpinball.org/en/latest/example_games

MPF Documentation Developer Documentation, Release 0.50.22

2. Open and edit your scriptlet file

Next, edit the scriptlet file you created. At a bare minimum, you’ll need this:

from mpf.core.scriptlet import Scriptlet

class Claw(Scriptlet):
pass

Note that MPF contains a Scriptlet base class which is very simple. (You can see the source of it on GitHub here.)
We called our class Claw in this case.

Pretty much all this does is give you a reference to the main MPF machine controller at self.machine, as well as
setup a delay manager you can use and set the name of your scriptlet. There’s also an on_load() method which is
called when the scriptlet is loaded which you can use in your own code.

3. Add the scriptlet to your machine config

Next, edit your machine config file and add a scriptlets: section, then under there add the module (file name)
for your scriptlet, followed by a dot, followed by the class name for your scriptlet.

For Demo Man, that looks like this:

scriptlets:
- claw.Claw

4. Real-world example

At this point you should be able to run your game, though nothing should happen because you haven’t added any code
to your scriptlet.

Take a look at the final Demo Man claw scriptlet to see what we did there. Since Scriptlets have access to self.
machine and they load when MPF loads, you can do anything you want in them.

22 Chapter 7. Index

https://github.com/missionpinball/mpf/blob/dev/mpf/core/scriptlet.py

MPF Documentation Developer Documentation, Release 0.50.22

"""Claw controller Scriptlet for Demo Man"""

from mpf.core.scriptlet import Scriptlet

class Claw(Scriptlet):

def on_load(self):

self.auto_release_in_progress = False

if the elevator switch is active for more than 100ms, that means
a ball is there, so we want to get it and deliver it to the claw
self.machine.switch_controller.add_switch_handler(

's_elevator_hold', self.get_ball, ms=100)

This is a one-time thing to check to see if there's a ball in
the elevator when MPF starts, and if so, we want to get it.
if self.machine.switch_controller.is_active('s_elevator_hold'):

self.auto_release_in_progress = True
self.get_ball()

We'll use the event 'light_claw' to light the claw, so in the
future all we have to do is post this event and everything else
will be automatic.
self.machine.events.add_handler('light_claw', self.light_claw)

def enable(self):
"""Enable the claw."""

move left & right with the flipper switches, and stop moving when
they're released

self.machine.switch_controller.add_switch_handler(
's_flipper_lower_left', self.move_left)

self.machine.switch_controller.add_switch_handler(
's_flipper_lower_left', self.stop_moving, state=0)

self.machine.switch_controller.add_switch_handler(
's_flipper_lower_right', self.move_right)

self.machine.switch_controller.add_switch_handler(
's_flipper_lower_right', self.stop_moving, state=0)

release the ball when the launch button is hit
self.machine.switch_controller.add_switch_handler(

's_ball_launch', self.release)

stop moving if the claw hits a limit switch
self.machine.switch_controller.add_switch_handler(

's_claw_position_1', self.stop_moving)

We can use this event for slides to explain what's going on for
the player.
self.machine.events.post('claw_enabled')

def disable(self):
"""Disable the claw."""

(continues on next page)

7.2. Adding custom code to your game 23

MPF Documentation Developer Documentation, Release 0.50.22

(continued from previous page)

self.stop_moving()

remove all the switch handlers
self.machine.switch_controller.remove_switch_handler(

's_flipper_lower_left', self.move_left)
self.machine.switch_controller.remove_switch_handler(

's_flipper_lower_left', self.stop_moving, state=0)
self.machine.switch_controller.remove_switch_handler(

's_flipper_lower_right', self.move_right)
self.machine.switch_controller.remove_switch_handler(

's_flipper_lower_right', self.stop_moving, state=0)
self.machine.switch_controller.remove_switch_handler(

's_ball_launch', self.release)
self.machine.switch_controller.remove_switch_handler(

's_claw_position_1', self.stop_moving)
self.machine.switch_controller.remove_switch_handler(

's_claw_position_1', self.release, state=0)
self.machine.switch_controller.remove_switch_handler(

's_claw_position_2', self.release)

self.machine.events.post('claw_disabled')

def move_left(self):
"""Start the claw moving to the left."""
before we turn on the driver to move the claw, make sure we're not
at the left limit
if (self.machine.switch_controller.is_active('s_claw_position_2') and

self.machine.switch_controller.is_active('s_claw_position_1')):
return

self.machine.coils['c_claw_motor_left'].enable()

def move_right(self):
"""Start the claw moving to the right."""
before we turn on the driver to move the claw, make sure we're not
at the right limit
if (self.machine.switch_controller.is_active('s_claw_position_1') and

self.machine.switch_controller.is_inactive('s_claw_position_2')):
return

self.machine.coils['c_claw_motor_right'].enable()

def stop_moving(self):
"""Stop the claw moving."""
self.machine.coils['c_claw_motor_left'].disable()
self.machine.coils['c_claw_motor_right'].disable()

def release(self):
"""Release the ball by disabling the claw magnet."""
self.disable_claw_magnet()
self.auto_release_in_progress = False

Disable the claw since it doesn't have a ball anymore
self.disable()

def auto_release(self):
"""Aumatically move and release the ball."""
disable the switches since the machine is in control now
self.disable()

(continues on next page)

24 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

(continued from previous page)

If we're at the left limit, we need to move right before we can
release the ball.
if (self.machine.switch_controller.is_active('s_claw_position_2') and

self.machine.switch_controller.is_active('s_claw_position_1')):
self.machine.switch_controller.add_switch_handler(

's_claw_position_1', self.release, state=0)
move right, drop when switch 1 opens
self.move_right()

If we're at the right limit, we need to move left before we can
release the ball
elif (self.machine.switch_controller.is_active('s_claw_position_1') and

self.machine.switch_controller.is_inactive('s_claw_position_2')):
self.machine.switch_controller.add_switch_handler(

's_claw_position_2', self.release)
move left, drop when switch 2 closes
self.move_left()

If we're not at any limit, we can release the ball now.
else:

self.release()

def get_ball(self):
"""Get a ball from the elevator."""

If there's no game in progress, we're going to auto pickup and
drop the ball with no player input

if not self.machine.game:
self.auto_release_in_progress = True

If the claw is not already in the ball pickup position, then move it
to the right.
if not (self.machine.switch_controller.is_active('s_claw_position_1') and

self.machine.switch_controller.is_inactive('s_claw_position_2')):
self.move_right()

self.machine.switch_controller.add_switch_handler(
's_claw_position_1', self.do_pickup)

If the claw is in position for a pickup, we can do that pickup now
else:

self.do_pickup()

def do_pickup(self):
"""Pickup a ball from the elevator"""
self.stop_moving()
self.machine.switch_controller.remove_switch_handler(

's_claw_position_1', self.do_pickup)
self.enable_claw_magnet()
self.machine.coils['c_elevator_motor'].enable()
self.machine.switch_controller.add_switch_handler('s_elevator_index',

self.stop_elevator)

If this is not an auto release, enable control of the claw for the
player

(continues on next page)

7.2. Adding custom code to your game 25

MPF Documentation Developer Documentation, Release 0.50.22

(continued from previous page)

if not self.auto_release_in_progress:
self.enable()

def stop_elevator(self):
"""Stop the elevator."""
self.machine.coils['c_elevator_motor'].disable()

if self.auto_release_in_progress:
self.auto_release()

def light_claw(self, **kwargs):
"""Lights the claw."""

Lighting the claw just enables the diverter so that the ball shot
that way will go to the elevator. Once the ball hits the elevator,
the other methods kick in to deliver it to the claw, and then once
the claw has it, the player can move and release it on their own.
self.machine.diverters['diverter'].enable()

def disable_claw_magnet(self):
"""Disable the claw magnet."""
self.machine.coils['c_claw_magnet'].disable()

def enable_claw_magnet(self):
"""Enable the claw magnet."""
self.machine.coils['c_claw_magnet'].enable()

7.3 API Reference

MPF’s API reference is broken into several categories. All of it is presented in the way that the modules and classes
are actually used in MPF.

Core Components

MPF core components.

Devices

MPF devices, including physical devices like flippers, ball devices, switches, lights, etc. as well as logical
devices like ball saves, extra balls, multiballs, etc.

Modes

Built-in modes, such as game, attract, tilt, credits, etc.

Platforms

Hardware platforms interfacess for all supported hardware.

Config Players

Modules responsible for all config players (show_player, light_player, score_player, etc.)

Tests

All unit test base classes for writing tests for MPF and your own game.

Miscellaneous Components

26 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

Things that don’t fit into other categories, including utility functions, the base classes for modes, players,
timers, and other utility functions.

7.3.1 Core Components

Core MPF machine components, accessible to programmers at self.machine.*name*. For example, the ball
controller is at self.machine.ball_controller, the event manager is self.machine.events, etc.

self.machine.asset_manager

class mpf.core.assets.AsyncioSyncAssetManager(machine: mpf.core.machine.MachineController)
Bases: mpf.core.assets.BaseAssetManager

AssetManager which uses asyncio to load assets.

Accessing the asset_manager in code

There is only one instance of the asset_manager in MPF, and it’s accessible via self.machine.
asset_manager.

Methods & Attributes

The asset_manager has the following methods & attributes available. Note that methods & attributes inherited
from base classes are not included here.

load_asset(asset)
Load an asset.

wait_for_asset_load(asset)
Wait for an asset to load.

self.machine.auditor

class mpf.plugins.auditor.Auditor(machine: MachineController)
Bases: object

Writes switch events, regular events, and player variables to an audit log file.

Accessing the auditor in code

There is only one instance of the auditor in MPF, and it’s accessible via self.machine.auditor.

Methods & Attributes

The auditor has the following methods & attributes available. Note that methods & attributes inherited from
base classes are not included here.

audit(audit_class, event, **kwargs)
Log an auditable event.

Parameters

7.3. API Reference 27

MPF Documentation Developer Documentation, Release 0.50.22

• audit_class – A string of the section we want this event to be logged to.

• event – A string name of the event we’re auditing.

• **kwargs – Not used, but included since some of the audit events might include random
kwargs.

audit_event(eventname, **kwargs)
Record this event in the audit log.

Parameters

• eventname – The string name of the event.

• **kwargs – not used, but included since some types of events include kwargs.

audit_player(**kwargs)
Write player data to the audit log.

Typically this is only called at the end of a game.

Parameters **kwargs – not used, but included since some types of events include kwargs.

audit_shot(name, profile, state)
Record shot hit.

audit_switch(change: mpf.core.switch_controller.MonitoredSwitchChange)
Record switch change.

disable(**kwargs)
Disable the auditor.

enable(**kwargs)
Enable the auditor.

This method lets you enable the auditor so it only records things when you want it to. Typically this is
called at the beginning of a game.

Parameters **kwargs – No function here. They just exist to allow this method to be registered
as a handler for events that might contain keyword arguments.

enabled = None
Attribute that’s viewed by other core components to let them know they should send auditing events. Set
this via the enable() and disable() methods.

self.machine.ball_controller

class mpf.core.ball_controller.BallController(machine: mpf.core.machine.MachineController)
Bases: mpf.core.mpf_controller.MpfController

Tracks and manages all the balls in a pinball machine.

Accessing the ball_controller in code

There is only one instance of the ball_controller in MPF, and it’s accessible via self.machine.
ball_controller.

28 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

Methods & Attributes

The ball_controller has the following methods & attributes available. Note that methods & attributes inherited
from base classes are not included here.

add_captured_ball(source: mpf.devices.ball_device.ball_device.BallDevice)→ None
Inform ball controller about a capured ball (which might be new).

are_balls_collected(target: Iterable[str])→ bool
Check to see if all the balls are contained in devices tagged with the parameter that was passed.

Note if you pass a target that’s not used in any ball devices, this method will return True. (Because you’re
asking if all balls are nowhere, and they always are. :)

Parameters target – String or list of strings of the tags you’d like to collect the balls to.
Default of None will be replaced with ‘home’ and ‘trough’.

collect_balls(target=’home, trough’)→ None
Ensure that all balls are in contained in ball devices with the tag or list of tags you pass.

Typically this would be used after a game ends, or when the machine is reset or first starts up, to ensure
that all balls are in devices tagged with ‘home’ and/or ‘trough’.

Parameters target – A string of the tag name or a list of tags names of the ball devices you
want all the balls to end up in. Default is [‘home’, ‘trough’].

dump_ball_counts()→ None
Dump ball count of all devices.

request_to_start_game(**kwargs)→ bool
Handle result of the request_to_start_game event.

Checks to make sure that the balls are in all the right places and returns. If too many balls are missing
(based on the config files ‘Min Balls’ setting), it will return False to reject the game start request.

self.machine.bcp

class mpf.core.bcp.bcp.Bcp(machine: MachineController)
Bases: mpf.core.mpf_controller.MpfController

BCP Module.

Accessing the bcp in code

There is only one instance of the bcp in MPF, and it’s accessible via self.machine.bcp.

Methods & Attributes

The bcp has the following methods & attributes available. Note that methods & attributes inherited from base
classes are not included here.

send(bcp_command, **kwargs)
Emulate legacy send.

Parameters bcp_command – Commmand to send

7.3. API Reference 29

MPF Documentation Developer Documentation, Release 0.50.22

self.machine.device_manager

class mpf.core.device_manager.DeviceManager(machine)
Bases: mpf.core.mpf_controller.MpfController

Manages all the devices in MPF.

Accessing the device_manager in code

There is only one instance of the device_manager in MPF, and it’s accessible via self.machine.
device_manager.

Methods & Attributes

The device_manager has the following methods & attributes available. Note that methods & attributes inherited
from base classes are not included here.

create_devices(collection_name, config)
Create devices for a collection.

create_machinewide_device_control_events(**kwargs)
Create machine wide control events.

get_device_control_events(config)
Scan a config dictionary for control_events.

Yields events, methods, delays, and devices for all the devices and control_events in that config.

Parameters config – An MPF config dictionary (either machine-wide or mode- specific).

Returns

• The event name

• The callback method of the device

• The delay in ms

• The device object

Return type A generator of 4-item tuples

get_monitorable_devices()
Return all devices which are registered as monitorable.

initialize_devices()
Initialise devices.

load_devices_config(validate=True)
Load all devices.

notify_device_changes(device, notify, old, value)
Notify subscribers about changes in a registered device.

Parameters

• device – The device that changed.

• notify –

• old – The old value.

30 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

• value – The new value.

register_monitorable_device(device)
Register a monitorable device.

Parameters device – The device to register.

stop_devices()
Stop all devices in the machine.

self.machine.events

class mpf.core.events.EventManager(machine: MachineController)
Bases: mpf.core.mpf_controller.MpfController

Handles all the events and manages the handlers in MPF.

Accessing the events in code

There is only one instance of the events in MPF, and it’s accessible via self.machine.events.

Methods & Attributes

The events has the following methods & attributes available. Note that methods & attributes inherited from base
classes are not included here.

add_async_handler(event: str, handler: Any, priority: int = 1, blocking_facility: Any = None,
**kwargs)→ mpf.core.events.EventHandlerKey

Register a coroutine as event handler.

add_handler(event: str, handler: Any, priority: int = 1, blocking_facility: Any = None, **kwargs)
→ mpf.core.events.EventHandlerKey

Register an event handler to respond to an event.

Parameters

• event – String name of the event you’re adding a handler for. Since events are text
strings, they don’t have to be pre-defined. Note that all event strings will be converted to
lowercase.

• handler – The callable method that will be called when the event is fired. Since it’s
possible for events to have kwargs attached to them, the handler method must include
**kwargs in its signature.

• priority – An arbitrary integer value that defines what order the handlers will be called
in. The default is 1, so if you have a handler that you want to be called first, add it here
with a priority of 2. (Or 3 or 10 or 100000.) The numbers don’t matter. They’re called
from highest to lowest. (i.e. priority 100 is called before priority 1.)

• **kwargs – Any any additional keyword/argument pairs entered here will be attached
to the handler and called whenever that handler is called. Note these are in addition to
kwargs that could be passed as part of the event post. If there’s a conflict, the event-level
ones will win.

Returns A GUID reference to the handler which you can use to later remove the handler via
remove_handler_by_key.

For example:

7.3. API Reference 31

MPF Documentation Developer Documentation, Release 0.50.22

my_handler = self.machine.events.add_handler('ev', self.test))

Then later to remove all the handlers that a module added, you could: for handler in handler_list:
events.remove_handler(my_handler)

does_event_exist(event_name: str)→ bool
Check to see if any handlers are registered for the event name that is passed.

Parameters event_name – The string name of the event you want to check. This string will
be converted to lowercase.

Returns True or False

get_event_and_condition_from_string(event_string: str) → Tuple[str, Op-
tional[BaseTemplate]]

Parse an event string to divide the event name from a possible placeholder / conditional in braces.

Parameters event_string – String to parse

Returns

First item is the event name, cleaned up a by converting it to lowercase.

Second item is the condition (A BoolTemplate instance) if it exists, or None if it doesn’t.

Return type 2-item tuple

post(event: str, callback=None, **kwargs)→ None
Post an event which causes all the registered handlers to be called.

Events are processed serially (e.g. one at a time), so if the event core is in the process of handling another
event, this event is added to a queue and processed after the current event is done.

You can control the order the handlers will be called by optionally specifying a priority when the handlers
were registered. (Higher priority values will be processed first.)

Parameters

• event – A string name of the event you’re posting. Note that you can post whatever
event you want. You don’t have to set up anything ahead of time, and if no handlers are
registered for the event you post, so be it. Note that this event name will be converted to
lowercase.

• callback – An optional method which will be called when the final handler is done
processing this event. Default is None.

• **kwargs – One or more options keyword/value pairs that will be passed to each handler.
(The event manager will enforce that handlers have **kwargs in their signatures when
they’re registered to prevent run-time crashes from unexpected kwargs that were included
in post() calls.

post_async(event: str, **kwargs)→ asyncio.futures.Future
Post event and wait until all handlers are done.

post_boolean(event: str, callback=None, **kwargs)→ None
Post an boolean event which causes all the registered handlers to be called one-by-one.

Boolean events differ from regular events in that if any handler returns False, the remaining handlers will
not be called.

Events are processed serially (e.g. one at a time), so if the event core is in the process of handling another
event, this event is added to a queue and processed after the current event is done.

32 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

You can control the order the handlers will be called by optionally specifying a priority when the handlers
were registered. (Higher priority values will be processed first.)

Parameters

• event – A string name of the event you’re posting. Note that you can post whatever
event you want. You don’t have to set up anything ahead of time, and if no handlers are
registered for the event you post, so be it. Note that this event name will be converted to
lowercase.

• callback – An optional method which will be called when the final handler is done
processing this event. Default is None. If any handler returns False and cancels this
boolean event, the callback will still be called, but a new kwarg ev_result=False will be
passed to it.

• **kwargs – One or more options keyword/value pairs that will be passed to each handler.

post_queue(event, callback, **kwargs)
Post a queue event which causes all the registered handlers to be called.

Queue events differ from standard events in that individual handlers are given the option to register a
“wait”, and the callback will not be called until any handler(s) that registered a wait will have to release
that wait. Once all the handlers release their waits, the callback is called.

Events are processed serially (e.g. one at a time), so if the event core is in the process of handling another
event, this event is added to a queue and processed after the current event is done.

You can control the order the handlers will be called by optionally specifying a priority when the handlers
were registered. (Higher numeric values will be processed first.)

Parameters

• event – A string name of the event you’re posting. Note that you can post whatever
event you want. You don’t have to set up anything ahead of time, and if no handlers are
registered for the event you post, so be it. Note that this event name will be converted to
lowercase.

• callback – The method which will be called when the final handler is done processing
this event and any handlers that registered waits have cleared their waits.

• **kwargs – One or more options keyword/value pairs that will be passed to each han-
dler. (Just make sure your handlers are expecting them. You can add **kwargs to your
handler methods if certain ones don’t need them.)

Examples

Post the queue event called pizza_time, and then call self.pizza_done when done:

self.machine.events.post_queue('pizza_time', self.pizza_done)

post_queue_async(event: str, **kwargs)→ asyncio.futures.Future
Post queue event, wait until all handlers are done and locks are released.

post_relay(event: str, callback=None, **kwargs)→ None
Post a relay event which causes all the registered handlers to be called.

A dictionary can be passed from handler-to-handler and modified as needed.

Parameters

7.3. API Reference 33

MPF Documentation Developer Documentation, Release 0.50.22

• event – A string name of the event you’re posting. Note that you can post whatever
event you want. You don’t have to set up anything ahead of time, and if no handlers are
registered for the event you post, so be it. Note that this event name will be converted to
lowercase.

• callback – The method which will be called when the final handler is done processing
this event. Default is None.

• **kwargs – One or more options keyword/value pairs that will be passed to each han-
dler. (Just make sure your handlers are expecting them. You can add **kwargs to your
handler methods if certain ones don’t need them.)

Events are processed serially (e.g. one at a time), so if the event core is in the process of handling another
event, this event is added to a queue and processed after the current event is done.

You can control the order the handlers will be called by optionally specifying a priority when the handlers
were registered. (Higher priority values will be processed first.)

Relay events differ from standard events in that the resulting kwargs from one handler are passed to the
next handler. (In other words, standard events mean that all the handlers get the same initial kwargs,
whereas relay events “relay” the resulting kwargs from one handler to the next.)

post_relay_async(event: str, **kwargs)→ asyncio.futures.Future
Post relay event, wait until all handlers are done and return result.

process_event_queue()→ None
Check if there are any other events that need to be processed, and then process them.

remove_all_handlers_for_event(event: str)→ None
Remove all handlers for event.

Use carefully. This is currently used to remove handlers for all init events which only occur once.

remove_handler(method: Any)→ None
Remove an event handler from all events a method is registered to handle.

Parameters method – The method whose handlers you want to remove.

remove_handler_by_event(event: str, handler: Any)→ None
Remove the handler you pass from the event you pass.

Parameters

• event – The name of the event you want to remove the handler from. This string will be
converted to lowercase.

• handler – The handler method you want to remove.

Note that keyword arguments for the handler are not taken into consideration. In other words, this method
only removes the registered handler / event combination, regardless of whether the keyword arguments
match or not.

remove_handler_by_key(key: mpf.core.events.EventHandlerKey)→ None
Remove a registered event handler by key.

Parameters key – The key of the handler you want to remove

remove_handlers_by_keys(key_list: List[mpf.core.events.EventHandlerKey])→ None
Remove multiple event handlers based on a passed list of keys.

Parameters key_list – A list of keys of the handlers you want to remove

replace_handler(event: str, handler: Any, priority: int = 1, **kwargs) →
mpf.core.events.EventHandlerKey

Check to see if a handler (optionally with kwargs) is registered for an event and replaces it if so.

34 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

Parameters

• event – The event you want to check to see if this handler is registered for. This string
will be converted to lowercase.

• handler – The method of the handler you want to check.

• priority – Optional priority of the new handler that will be registered.

• **kwargs – The kwargs you want to check and the kwargs that will be registered with
the new handler.

If you don’t pass kwargs, this method will just look for the handler and event combination. If you do pass
kwargs, it will make sure they match before replacing the existing entry.

If this method doesn’t find a match, it will still add the new handler.

wait_for_any_event(event_names: List[str])→ asyncio.futures.Future
Wait for any event from event_names.

wait_for_event(event_name: str)→ asyncio.futures.Future
Wait for event.

self.machine.info_lights

class mpf.plugins.info_lights.InfoLights(machine)
Bases: object

Uses lights to represent game state.

Info lights are primarily used in EM and early solid state machines, typically lights in the backbox for game
over, tilt, which player is up, the current ball number, etc.

Accessing the info_lights in code

There is only one instance of the info_lights in MPF, and it’s accessible via self.machine.info_lights.

Methods & Attributes

The info_lights has the following methods & attributes available. Note that methods & attributes inherited from
base classes are not included here.

self.machine.light_controller

class mpf.core.light_controller.LightController(machine:
mpf.core.machine.MachineController)

Bases: mpf.core.mpf_controller.MpfController

Handles light updates and light monitoring.

Accessing the light_controller in code

There is only one instance of the light_controller in MPF, and it’s accessible via self.machine.
light_controller.

7.3. API Reference 35

MPF Documentation Developer Documentation, Release 0.50.22

Methods & Attributes

The light_controller has the following methods & attributes available. Note that methods & attributes inherited
from base classes are not included here.

initialise_light_subsystem()
Initialise the light subsystem.

monitor_lights()
Update the color of lights for the monitor.

self.machine

class mpf.core.machine.MachineController(mpf_path: str, machine_path: str, options: dict)
Bases: mpf.core.logging.LogMixin

Base class for the Machine Controller object.

The machine controller is the main entity of the entire framework. It’s the main part that’s in charge and makes
things happen.

Parameters

• options (dict) – A dictionary of options built from the command line options used to
launch mpf.py.

• machine_path – The root path of this machine_files folder

Accessing the machine controller in code

The machine controller is the main component in MPF, accessible via self.machine. See the Overview &
Tour of MPF code for details.

Methods & Attributes

The machine controller has the following methods & attributes available. Note that methods & attributes inher-
ited from base classes are not included here.

add_platform(name: str)→ None
Make an additional hardware platform interface available to MPF.

Parameters name – String name of the platform to add. Must match the name of a platform file
in the mpf/platforms folder (without the .py extension).

clear_boot_hold(hold: str)→ None
Clear a boot hold.

configure_machine_var(name: str, persist: bool, expire_secs: int = None)→ None
Create a new machine variable.

Parameters

• name – String name of the variable.

• persist – Boolean as to whether this variable should be saved to disk so it’s available
the next time MPF boots.

36 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

• expire_secs – Optional number of seconds you’d like this variable to persist on disk
for. When MPF boots, if the expiration time of the variable is in the past, it will not be
loaded. For example, this lets you write the number of credits on the machine to disk to
persist even during power off, but you could set it so that those only stay persisted for an
hour.

create_data_manager(config_name: str)→ mpf.core.data_manager.DataManager
Return a new DataManager for a certain config.

Parameters config_name – Name of the config

get_machine_var(name: str)→ Any
Return the value of a machine variable.

Parameters name – String name of the variable you want to get that value for.

Returns The value of the variable if it exists, or None if the variable does not exist.

get_platform_sections(platform_section: str, overwrite: str)→ SmartVirtualHardwarePlatform
Return platform section.

init_done()→ Generator[[int, None], None]
Finish init.

Called when init is done and all boot holds are cleared.

initialise()→ Generator[[int, None], None]
Initialise machine.

initialise_core_and_hardware()→ Generator[[int, None], None]
Load core modules and hardware.

initialise_mpf()
Initialise MPF.

is_machine_var(name: str)→ bool
Return true if machine variable exists.

register_boot_hold(hold: str)→ None
Register a boot hold.

register_monitor(monitor_class: str, monitor: Callable[..., Any])→ None
Register a monitor.

Parameters

• monitor_class – String name of the monitor class for this monitor that’s being regis-
tered.

• monitor – Callback to notify

MPF uses monitors to allow components to monitor certain internal elements of MPF.

For example, a player variable monitor could be setup to be notified of any changes to a player variable, or
a switch monitor could be used to allow a plugin to be notified of any changes to any switches.

The MachineController’s list of registered monitors doesn’t actually do anything. Rather it’s a dictionary
of sets which the monitors themselves can reference when they need to do something. We just needed a
central registry of monitors.

remove_machine_var(name: str)→ None
Remove a machine variable by name.

If this variable persists to disk, it will remove it from there too.

7.3. API Reference 37

MPF Documentation Developer Documentation, Release 0.50.22

Parameters name – String name of the variable you want to remove.

remove_machine_var_search(startswith: str = ”, endswith: str = ”)→ None
Remove a machine variable by matching parts of its name.

Parameters

• startswith – Optional start of the variable name to match.

• endswith – Optional end of the variable name to match.

For example, if you pass startswit=’player’ and endswith=’score’, this method will match and remove
player1_score, player2_score, etc.

reset()→ Generator[[int, None], None]
Reset the machine.

This method is safe to call. It essentially sets up everything from scratch without reloading the config files
and assets from disk. This method is called after a game ends and before attract mode begins.

run()→ None
Start the main machine run loop.

set_default_platform(name: str)→ None
Set the default platform.

It is used if a device class-specific or device-specific platform is not specified.

Parameters name – String name of the platform to set to default.

set_machine_var(name: str, value: Any)→ None
Set the value of a machine variable.

Parameters

• name – String name of the variable you’re setting the value for.

• value – The value you’re setting. This can be any Type.

shutdown()→ None
Shutdown the machine.

stop(**kwargs)→ None
Perform a graceful exit of MPF.

validate_machine_config_section(section: str)→ None
Validate a config section.

verify_system_info()
Dump information about the Python installation to the log.

Information includes Python version, Python executable, platform, and core architecture.

self.machine.mode_controller

class mpf.core.mode_controller.ModeController(machine: mpf.core.machine.MachineController)
Bases: mpf.core.mpf_controller.MpfController

Responsible for loading, unloading, and managing all modes in MPF.

38 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

Accessing the mode_controller in code

There is only one instance of the mode_controller in MPF, and it’s accessible via self.machine.
mode_controller.

Methods & Attributes

The mode_controller has the following methods & attributes available. Note that methods & attributes inherited
from base classes are not included here.

create_mode_devices()
Create mode devices.

dump()
Dump the current status of the running modes to the log file.

initialise_modes(**kwargs)
Initialise modes.

is_active(mode_name)
Return true if the mode is active.

Parameters mode_name – String name of the mode to check.

Returns True if the mode is active, False if it is not.

load_mode_devices()
Load mode devices.

load_modes(**kwargs)
Load the modes from the modes: section of the machine configuration file.

register_load_method(load_method, config_section_name=None, priority=0, **kwargs)
Register a method which is called when the mode is loaded.

Used by core components, plugins, etc. to register themselves with the Mode Controller for anything they
need a mode to do when it’s registered.

Parameters

• load_method – The method that will be called when this mode code loads.

• config_section_name – An optional string for the section of the configuration file
that will be passed to the load_method when it’s called.

• priority – Int of the relative priority which allows remote methods to be called in a
specific order. Default is 0. Higher values will be called first.

• **kwargs – Any additional keyword arguments specified will be passed to the
load_method.

Note that these methods will be called once, when the mode code is first initialized during the MPF boot
process.

register_start_method(start_method, config_section_name=None, priority=0, **kwargs)
Register a method which is called anytime a mode is started.

Used by core components, plugins, etc. to register themselves with the Mode Controller for anything that
they a mode to do when it starts.

Parameters

• start_method – The method that will be called when this mode code loads.

7.3. API Reference 39

MPF Documentation Developer Documentation, Release 0.50.22

• config_section_name – An optional string for the section of the configuration file
that will be passed to the start_method when it’s called.

• priority – Int of the relative priority which allows remote methods to be called in a
specific order. Default is 0. Higher values will be called first.

• **kwargs – Any additional keyword arguments specified will be passed to the
start_method.

register_stop_method(callback, priority=0)
Register a method which is called when the mode is stopped.

These are universal, in that they’re called every time a mode stops priority is the priority they’re called.
Has nothing to do with mode priority.

remove_start_method(start_method, config_section_name=None, priority=0, **kwargs)
Remove an existing start method.

remove_stop_method(callback, priority=0)
Remove an existing stop method.

set_mode_state(mode: mpf.core.mode.Mode, active: bool)
Remember mode state.

self.machine.placeholder_manager

class mpf.core.placeholder_manager.PlaceholderManager(machine)
Bases: mpf.core.placeholder_manager.BasePlaceholderManager

Manages templates and placeholders for MPF.

Accessing the placeholder_manager in code

There is only one instance of the placeholder_manager in MPF, and it’s accessible via self.machine.
placeholder_manager.

Methods & Attributes

The placeholder_manager has the following methods & attributes available. Note that methods & attributes
inherited from base classes are not included here.

get_global_parameters(name)
Return global params.

self.machine.platform_controller

class mpf.core.platform_controller.PlatformController(machine: MachineCon-
troller)

Bases: mpf.core.mpf_controller.MpfController

Manages all platforms and rules.

Accessing the platform_controller in code

There is only one instance of the platform_controller in MPF, and it’s accessible via self.machine.
platform_controller.

40 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

Methods & Attributes

The platform_controller has the following methods & attributes available. Note that methods & attributes inher-
ited from base classes are not included here.

clear_hw_rule(rule: mpf.core.platform_controller.HardwareRule)
Clear all rules for switch and this driver.

Parameters rule – Hardware rule to clean.

set_pulse_on_hit_and_enable_and_release_and_disable_rule(enable_switch:
mpf.core.platform_controller.SwitchRuleSettings,
disable_switch:
mpf.core.platform_controller.SwitchRuleSettings,
driver:
mpf.core.platform_controller.DriverRuleSettings,
pulse_setting:
mpf.core.platform_controller.PulseRuleSettings
= None,
hold_settings:
mpf.core.platform_controller.HoldRuleSettings
= None) →
mpf.core.platform_controller.HardwareRule

Add pulse on hit and enable and release and disable rule to driver.

Pulse and then enable driver. Cancel pulse and enable when switch is released or a disable switch is hit.

Parameters

• enable_switch –

• disable_switch –

• driver –

• pulse_setting –

• hold_settings –

set_pulse_on_hit_and_enable_and_release_rule(enable_switch:
mpf.core.platform_controller.SwitchRuleSettings,
driver:
mpf.core.platform_controller.DriverRuleSettings,
pulse_setting:
mpf.core.platform_controller.PulseRuleSettings
= None, hold_settings:
mpf.core.platform_controller.HoldRuleSettings
= None) →
mpf.core.platform_controller.HardwareRule

Add pulse on hit and enable and relase rule to driver.

Pulse and enable a driver. Cancel pulse and enable if switch is released.

Parameters

• enable_switch – Switch which triggers the rule.

• driver – Driver to trigger.

• pulse_setting –

class PulseRuleSettings

7.3. API Reference 41

MPF Documentation Developer Documentation, Release 0.50.22

• hold_settings –

class HoldRuleSettings

set_pulse_on_hit_and_release_rule(enable_switch: mpf.core.platform_controller.SwitchRuleSettings,
driver: mpf.core.platform_controller.DriverRuleSettings,
pulse_setting: mpf.core.platform_controller.PulseRuleSettings
= None)→ mpf.core.platform_controller.HardwareRule

Add pulse on hit and relase rule to driver.

Pulse a driver but cancel pulse when switch is released.

Parameters

• enable_switch – Switch which triggers the rule.

• driver –

class DriverRuleSettings

• pulse_setting –

class PulseRuleSettings

set_pulse_on_hit_rule(enable_switch: mpf.core.platform_controller.SwitchRuleSettings,
driver: mpf.core.platform_controller.DriverRuleSettings, pulse_setting:
mpf.core.platform_controller.PulseRuleSettings = None) →
mpf.core.platform_controller.HardwareRule

Add pulse on hit rule to driver.

Always do the full pulse. Even when the switch is released.

Parameters

• enable_switch – Switch which triggers the rule.

• driver –

class DriverRuleSettings

• pulse_setting –

class PulseRuleSettings

self.machine.service

class mpf.core.service_controller.ServiceController(machine)
Bases: mpf.core.mpf_controller.MpfController

Provides all service information and can perform service tasks.

Accessing the service in code

There is only one instance of the service in MPF, and it’s accessible via self.machine.service.

Methods & Attributes

The service has the following methods & attributes available. Note that methods & attributes inherited from
base classes are not included here.

get_coil_map()→ List[mpf.core.service_controller.CoilMap]
Return a map of all coils in the machine.

42 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

get_light_map()→ List[mpf.core.service_controller.LightMap]
Return a map of all lights in the machine.

get_switch_map()
Return a map of all switches in the machine.

is_in_service()→ bool
Return true if in service mode.

start_service()
Start service mode.

stop_service()
Stop service mode.

self.machine.settings

class mpf.core.settings_controller.SettingsController(machine)
Bases: mpf.core.mpf_controller.MpfController

Manages operator controllable settings.

Accessing the settings in code

There is only one instance of the settings in MPF, and it’s accessible via self.machine.settings.

Methods & Attributes

The settings has the following methods & attributes available. Note that methods & attributes inherited from
base classes are not included here.

add_setting(setting: mpf.core.settings_controller.SettingEntry)
Add a setting.

get_setting_machine_var(setting_name)
Return machine var name.

get_setting_value(setting_name)
Return the current value of a setting.

get_setting_value_label(setting_name)
Return label for value.

get_settings()→ List[mpf.core.settings_controller.SettingEntry]
Return all available settings.

set_setting_value(setting_name, value)
Set the value of a setting.

self.machine.show_controller

class mpf.core.show_controller.ShowController(machine)
Bases: mpf.core.mpf_controller.MpfController

Manages all the shows in a pinball machine.

The ShowController handles priorities, restores, running and stopping shows, etc.

7.3. API Reference 43

MPF Documentation Developer Documentation, Release 0.50.22

Accessing the show_controller in code

There is only one instance of the show_controller in MPF, and it’s accessible via self.machine.
show_controller.

Methods & Attributes

The show_controller has the following methods & attributes available. Note that methods & attributes inherited
from base classes are not included here.

create_show_config(name, priority=0, speed=1.0, loops=-1, sync_ms=None, man-
ual_advance=False, show_tokens=None, events_when_played=None,
events_when_stopped=None, events_when_looped=None,
events_when_paused=None, events_when_resumed=None,
events_when_advanced=None, events_when_stepped_back=None,
events_when_updated=None, events_when_completed=None)

Create a show config.

get_next_show_id()
Return the next show id.

play_show_with_config(config, mode=None, start_time=None)
Play and return a show from config.

Will add the mode priority if a mode is passed.

register_show(name, settings)
Register a named show.

replace_or_advance_show(old_instance, config: mpf.assets.show.ShowConfig, start_step,
start_time=None, stop_callback=None)

Replace or advance show.

Compare a given show (may be empty) to a show config and ensure that the new config becomes effective.
If the old show runs a config which is equal to the new config nothing will be done. If the old_instance
is set to manual_advance and one step behind the target step it will advance the show. Otherwise, the old
show is stopped and the new show is stopped in sync.

self.machine.switch_controller

class mpf.core.switch_controller.SwitchController(machine:
mpf.core.machine.MachineController)

Bases: mpf.core.mpf_controller.MpfController

Tracks all switches in the machine, receives switch activity, and converts switch changes into events.

Accessing the switch_controller in code

There is only one instance of the switch_controller in MPF, and it’s accessible via self.machine.
switch_controller.

Methods & Attributes

The switch_controller has the following methods & attributes available. Note that methods & attributes inherited
from base classes are not included here.

44 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

add_monitor(monitor: Callable[[mpf.core.switch_controller.MonitoredSwitchChange], None])
Add a monitor callback which is called on switch changes.

add_switch_handler(switch_name, callback, state=1, ms=0, return_info=False, call-
back_kwargs=None)→ mpf.core.switch_controller.SwitchHandler

Register a handler to take action on a switch event.

Parameters

• switch_name – String name of the switch you’re adding this handler for.

• callback – The method you want called when this switch handler fires.

• state – Integer of the state transition you want to callback to be triggered on. Default is
1 which means it’s called when the switch goes from inactive to active, but you can also
use 0 which means your callback will be called when the switch becomes inactive

• ms – Integer. If you specify a ‘ms’ parameter, the handler won’t be called until the witch
is in that state for that many milliseconds.

• return_info – If True, the switch controller will pass the parameters of the switch
handler as arguments to the callback, including switch_name, state, and ms. If False
(default), it just calls the callback with no parameters.

• callback_kwargs – Additional kwargs that will be passed with the callback.

You can mix & match entries for the same switch here.

static get_active_event_for_switch(switch_name)
Return the event name which is posted when switch_name becomes active.

get_next_timed_switch_event()
Return time of the next timed switch event.

is_active(switch_name, ms=None)
Query whether a switch is active.

Parameters

• switch_name – String name of the switch to check.

• ms – Milliseconds that the switch has been active. If this is non-zero, then this method will
only return True if the switch has been in that state for at least the number of ms specified.

Returns: True if the switch_name has been active for the given number of ms. If ms is not specified,
returns True if the switch is in the state regardless of how long it’s been in that state.

is_inactive(switch_name, ms=None)
Query whether a switch is inactive.

Parameters

• switch_name – String name of the switch to check.

• ms – Milliseconds that the switch has been inactive. If this is non-zero, then this method
will only return True if the switch has been in that state for at least the number of ms
specified.

Returns: True if the switch_name has been inactive for the given number of ms. If ms is not speci-
fied, returns True if the switch is in the state regardless of how long it’s been in that state.

7.3. API Reference 45

MPF Documentation Developer Documentation, Release 0.50.22

is_state(switch_name, state, ms=0.0)
Check if switch is in state.

Query whether a switch is in a given state and (optionally) whether it has been in that state for the specified
number of ms.

Parameters

• switch_name – String name of the switch to check.

• state – Bool of the state to check. True is active and False is inactive.

• ms – Milliseconds that the switch has been in that state. If this is non-zero, then this
method will only return True if the switch has been in that state for at least the number of
ms specified.

Returns: True if the switch_name has been in the state for the given number of ms. If ms is not spec-
ified, returns True if the switch is in the state regardless of how long it’s been in that state.

log_active_switches(**kwargs)
Write out entries to the INFO log file of all switches that are currently active.

ms_since_change(switch_name)
Return the number of ms that have elapsed since this switch last changed state.

Parameters switch_name – String name of the switch to check.

Returns Integer of milliseconds.

process_switch(name, state=1, logical=False)
Process a new switch state change for a switch by name.

This is the method that is called by the platform driver whenever a switch changes state. It’s also used by
the “other” modules that activate switches, including the keyboard and OSC interfaces.

State 0 means the switch changed from active to inactive, and 1 means it changed from inactive to active.
(The hardware & platform code handles NC versus NO switches and translates them to ‘active’ versus
‘inactive’.)

Parameters

• name – The string name of the switch.

• state – Boolean or int of state of the switch you’re processing, True/1 is active, False/0
is inactive.

• logical – Boolean which specifies whether the ‘state’ argument represents the “physi-
cal” or “logical” state of the switch. If True, a 1 means this switch is active and a 0 means
it’s inactive, regardless of the NC/NO configuration of the switch. If False, then the state
parameter passed will be inverted if the switch is configured to be an ‘NC’ type. Typically
the hardware will send switch states in their raw (logical=False) states, but other interfaces
like the keyboard and OSC will use logical=True.

process_switch_by_num(num, state, platform, logical=False)
Process a switch state change by switch number.

Parameters

• num – The switch number (based on the platform number) for the switch you’re setting.

• state – The state to set, either 0 or 1.

• platform – The platform this switch is on.

46 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

• logical – Whether the state you’re setting is the logical or physical state of the switch.
If a switch is NO (normally open), then the logical and physical states will be the same.
NC (normally closed) switches will have physical and logical states that are inverted from
each other.

process_switch_obj(obj: mpf.devices.switch.Switch, state, logical)
Process a new switch state change for a switch by name.

Parameters

• obj – The switch object.

• state – Boolean or int of state of the switch you’re processing, True/1 is active, False/0
is inactive.

• logical – Boolean which specifies whether the ‘state’ argument represents the “physi-
cal” or “logical” state of the switch. If True, a 1 means this switch is active and a 0 means
it’s inactive, regardless of the NC/NO configuration of the switch. If False, then the state
parameter passed will be inverted if the switch is configured to be an ‘NC’ type. Typically
the hardware will send switch states in their raw (logical=False) states, but other interfaces
like the keyboard and OSC will use logical=True.

This is the method that is called by the platform driver whenever a switch changes state. It’s also used by
the “other” modules that activate switches, including the keyboard and OSC interfaces.

State 0 means the switch changed from active to inactive, and 1 means it changed from inactive to active.
(The hardware & platform code handles NC versus NO switches and translates them to ‘active’ versus
‘inactive’.)

register_switch(name)
Add the name of a switch to the switch controller for tracking.

Parameters name – String name of the switch to add

remove_monitor(monitor: Callable[[mpf.core.switch_controller.MonitoredSwitchChange], None])
Remove a monitor callback.

remove_switch_handler(switch_name, callback, state=1, ms=0)
Remove a registered switch handler.

Currently this only works if you specify everything exactly as you set it up. (Except for return_info, which
doesn’t matter if true or false, it will remove either / both.

remove_switch_handler_by_key(switch_handler: mpf.core.switch_controller.SwitchHandler)
Remove switch handler by key returned from add_switch_handler.

set_state(switch_name, state=1, reset_time=False)
Set the state of a switch.

Note that since this method just sets the logical state of the switch, weird things can happen if the state
diverges from the physical state of the switch.

It’s mainly used with the virtual platforms to set the initial states of switches on MPF boot.

Parameters

• switch_name – String name of the switch to set.

• state – Logical state to set. 0 is inactive and 1 is active.

• reset_time – Sets the timestamp of the change to -100000 which indicates that this
switch was in this state when the machine was powered on and therefore the various timed
switch handlers will not be triggered.

7.3. API Reference 47

MPF Documentation Developer Documentation, Release 0.50.22

update_switches_from_hw()
Update the states of all the switches be re-reading the states from the hardware platform.

This method works silently and does not post any events if any switches changed state.

verify_switches()→ bool
Verify that switches states match the hardware.

Loops through all the switches and queries their hardware states via their platform interfaces and then
compares that to the state that MPF thinks the switches are in.

Throws logging warnings if anything doesn’t match.

This method is notification only. It doesn’t fix anything.

wait_for_any_switch(switch_names: List[str], state: int = 1, only_on_change=True, ms=0)
Wait for the first switch in the list to change into state.

Parameters

• switch_names – Iterable of strings of switch names. Whichever switch changes first
will trigger this wait.

• state – The state to wait for. 0 = inactive, 1 = active, 2 = opposite to current.

• only_on_change – Bool which controls whether this wait will be triggered now if the
switch is already in the state, or whether it will wait until the switch changes into that state.

• ms – How long the switch needs to be in the new state to trigger the wait.

wait_for_switch(switch_name: str, state: int = 1, only_on_change=True, ms=0)
Wait for a switch to change into a state.

Parameters

• switch_name – String name of the switch to wait for.

• state – The state to wait for. 0 = inactive, 1 = active, 2 = opposite to current.

• only_on_change – Bool which controls whether this wait will be triggered now if the
switch is already in the state, or whether it will wait until the switch changes into that state.

• ms – How long the switch needs to be in the new state to trigger the wait.

self.machine.switch_player

class mpf.plugins.switch_player.SwitchPlayer(machine)
Bases: object

Plays back switch sequences from a config file, used for testing.

Accessing the switch_player in code

There is only one instance of the switch_player in MPF, and it’s accessible via self.machine.
switch_player.

Methods & Attributes

The switch_player has the following methods & attributes available. Note that methods & attributes inherited
from base classes are not included here.

48 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

self.machine.text_ui

class mpf.core.text_ui.TextUi(machine: MachineController)
Bases: mpf.core.mpf_controller.MpfController

Handles the text-based UI.

Accessing the text_ui in code

There is only one instance of the text_ui in MPF, and it’s accessible via self.machine.text_ui.

Methods & Attributes

The text_ui has the following methods & attributes available. Note that methods & attributes inherited from
base classes are not included here.

stop(**kwargs)
Stop the Text UI and restore the original console screen.

7.3.2 Devices

Instances of MPF devices, available at self.machine.*device_collection*.*device_name*. For ex-
ample, a flipper device called “right_flipper” is at self.machine.flippers.right_flipper, and a multiball
called “awesome” is accessible at self.machine.multiballs.awesome.

Note that device collections are accessible as attributes and items, so the right flipper mentioned above is also available
to programmers at self.machine.flippers['right_flipper'].

Note: “Devices” in MPF are more than physical hardware devices. Many of the “game logic” components listed in
the user documentation (achievements, ball holds, extra balls, etc.) are implemented as “devices” in MPF code. (So
you can think of devices as being either physical or logical.)

Here’s a list of all the device types in MPF, linked to their API references.

self.machine.accelerometers.*

class mpf.devices.accelerometer.Accelerometer(*args, **kwargs)
Bases: mpf.core.system_wide_device.SystemWideDevice

Implements a multi-axis accelerometer.

In modern machines, accelerometers can be used for tilt detection and to detect whether a machine is properly
leveled.

The accelerometer device produces a data stream of readings which MPF converts to g-forces, and then events
can be posted when the “hit” (or g-force) of an accelerometer exceeds a predefined threshold.

Accessing accelerometers in code

The device collection which contains the accelerometers in your machine is available via self.machine.
accelerometers. For example, to access one called “foo”, you would use self.machine.
accelerometers.foo. You can also access accelerometers in dictionary form, e.g. self.machine.
accelerometers['foo'].

7.3. API Reference 49

MPF Documentation Developer Documentation, Release 0.50.22

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

Methods & Attributes

Accelerometers have the following methods & attributes available. Note that methods & attributes inherited
from base classes are not included here.

get_level_xyz()→ float
Return current 3D level.

get_level_xz()→ float
Return current 2D x/z level.

get_level_yz()→ float
Return current 2D y/z level.

raise_config_error(msg, error_no, *, context=None)
Raise a ConfigFileError exception.

update_acceleration(x: float, y: float, z: float)→ None
Calculate acceleration based on readings from hardware.

self.machine.accruals.*

class mpf.devices.logic_blocks.Accrual(machine, name)
Bases: mpf.devices.logic_blocks.LogicBlock

A type of LogicBlock which tracks many different events (steps) towards a goal.

The steps are able to happen in any order.

Accessing accruals in code

The device collection which contains the accruals in your machine is available via self.machine.
accruals. For example, to access one called “foo”, you would use self.machine.accruals.foo.
You can also access accruals in dictionary form, e.g. self.machine.accruals['foo'].

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

Methods & Attributes

Accruals have the following methods & attributes available. Note that methods & attributes inherited from base
classes are not included here.

complete()
Mark this logic block as complete.

Posts the ‘events_when_complete’ events and optionally restarts this logic block or disables it, depending
on this block’s configuration settings.

completed
Return if completed.

disable(**kwargs)
Disable this logic block.

Automatically called when one of the disable_event events is posted. Can also manually be called.

50 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

enable(**kwargs)
Enable this logic block.

Automatically called when one of the enable_event events is posted. Can also manually be called.

enabled
Return if enabled.

get_start_value()→ List[bool]
Return start states.

hit(step: int, **kwargs)
Increase the hit progress towards completion.

Automatically called when one of the count_events is posted. Can also manually be called.

Parameters step – Integer of the step number (0 indexed) that was just hit.

raise_config_error(msg, error_no, *, context=None)
Raise a ConfigFileError exception.

reset(**kwargs)
Reset the progress towards completion of this logic block.

Automatically called when one of the reset_event events is called. Can also be manually called.

restart(**kwargs)
Restart this logic block by calling reset() and enable().

Automatically called when one of the restart_event events is called. Can also be manually called.

value
Return value or None if that is currently not possible.

self.machine.achievement_groups.*

class mpf.devices.achievement_group.AchievementGroup(*args, **kwargs)
Bases: mpf.core.mode_device.ModeDevice

An achievement group in a pinball machine.

It is tracked per player and can automatically restore state on the next ball.

Accessing achievement_groups in code

The device collection which contains the achievement_groups in your machine is available via self.
machine.achievement_groups. For example, to access one called “foo”, you would use self.
machine.achievement_groups.foo. You can also access achievement_groups in dictionary form, e.g.
self.machine.achievement_groups['foo'].

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

Methods & Attributes

Achievement_groups have the following methods & attributes available. Note that methods & attributes inher-
ited from base classes are not included here.

disable(**kwargs)
Disable achievement group.

7.3. API Reference 51

MPF Documentation Developer Documentation, Release 0.50.22

enable(**kwargs)
Enable achievement group.

enabled
Return enabled state.

member_state_changed()
Notify the group that one of its members has changed state.

raise_config_error(msg, error_no, *, context=None)
Raise a ConfigFileError exception.

rotate_left(**kwargs)
Rotate to the left.

rotate_right(reverse=False, **kwargs)
Rotate to the right.

select_random_achievement(**kwargs)
Select a random achievement.

start_selected(**kwargs)
Start the currently selected achievement.

self.machine.achievements.*

class mpf.devices.achievement.Achievement(*args, **kwargs)
Bases: mpf.core.mode_device.ModeDevice

An achievement in a pinball machine.

It is tracked per player and can automatically restore state on the next ball.

Accessing achievements in code

The device collection which contains the achievements in your machine is available via self.machine.
achievements. For example, to access one called “foo”, you would use self.machine.
achievements.foo. You can also access achievements in dictionary form, e.g. self.machine.
achievements['foo'].

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

Methods & Attributes

Achievements have the following methods & attributes available. Note that methods & attributes inherited from
base classes are not included here.

add_to_group(group)
Add this achievement to an achievement group.

Parameters group – The achievement group to add this achievement to.

complete(**kwargs)
Complete achievement.

disable(**kwargs)
Disable achievement.

52 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

enable(**kwargs)
Enable the achievement.

It can only start if it was enabled before.

raise_config_error(msg, error_no, *, context=None)
Raise a ConfigFileError exception.

remove_from_group(group)
Remove this achievement from an achievement group.

Parameters group – The achievement group to remove this achievement from.

reset(**kwargs)
Reset the achievement to its initial state.

select(**kwargs)
Highlight (select) this achievement.

start(**kwargs)
Start achievement.

state
Return current state.

stop(**kwargs)
Stop achievement.

self.machine.autofires.*

class mpf.devices.autofire.AutofireCoil(*args, **kwargs)
Bases: mpf.core.system_wide_device.SystemWideDevice

Autofire coils which fire based on switch hits with a hardware rule.

Coils in the pinball machine which should fire automatically based on switch hits using defined hardware switch
rules.

Autofire coils work with rules written to the hardware pinball controller that allow them to respond “instantly”
to switch hits versus waiting for the lag of USB and the host computer.

Examples of Autofire Coils are pop bumpers, slingshots, and kicking targets. (Flippers use the same autofire
rules under the hood, but flipper devices have their own device type in MPF.

Accessing autofires in code

The device collection which contains the autofires in your machine is available via self.machine.
autofires. For example, to access one called “foo”, you would use self.machine.autofires.foo.
You can also access autofires in dictionary form, e.g. self.machine.autofires['foo'].

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

Methods & Attributes

Autofires have the following methods & attributes available. Note that methods & attributes inherited from base
classes are not included here.

7.3. API Reference 53

MPF Documentation Developer Documentation, Release 0.50.22

disable(**kwargs)
Disable the autofire device.

This is typically called at the end of a ball and when a tilt event happens.

Parameters **kwargs – Not used, just included so this method can be used as an event call-
back.

enable(**kwargs)
Enable the autofire device.

This causes the coil to respond to the switch hits. This is typically called when a ball starts to enable the
slingshots, pops, etc.

Note that there are several options for both the coil and the switch which can be incorporated into this
rule, including recycle times, switch debounce, reversing the switch (fire the coil when the switch goes
inactive), etc. These rules vary by hardware platform. See the user documentation for the hardware
platform for details.

Parameters **kwargs – Not used, just included so this method can be used as an event call-
back.

raise_config_error(msg, error_no, *, context=None)
Raise a ConfigFileError exception.

self.machine.ball_devices.*

class mpf.devices.ball_device.ball_device.BallDevice(*args, **kwargs)
Bases: mpf.core.system_wide_device.SystemWideDevice

Base class for a ‘Ball Device’ in a pinball machine.

A ball device is anything that can hold one or more balls, such as a trough, an eject hole, a VUK, a catapult, etc.

Args: Same as Device.

Accessing ball_devices in code

The device collection which contains the ball_devices in your machine is available via self.machine.
ball_devices. For example, to access one called “foo”, you would use self.machine.
ball_devices.foo. You can also access ball_devices in dictionary form, e.g. self.machine.
ball_devices['foo'].

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

Methods & Attributes

Ball_devices have the following methods & attributes available. Note that methods & attributes inherited from
base classes are not included here.

add_incoming_ball(incoming_ball: mpf.devices.ball_device.incoming_balls_handler.IncomingBall)
Notify this device that there is a ball heading its way.

available_balls = None
Number of balls that are available to be ejected. This differs from balls since it’s possible that this device
could have balls that are being used for some other eject, and thus not available.

balls
Return the number of balls we expect in the near future.

54 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

cancel_path_if_target_is(start, target)
Check if the ball is going to a certain target and cancel the path in that case.

capacity
Return the ball capacity.

eject(balls=1, target=None, **kwargs)→ int
Eject balls to target.

Return the number of balls found for eject. The remaining balls are queued for eject when available.

eject_all(target=None, **kwargs)
Eject all the balls from this device.

Parameters

• target – The string or BallDevice target for this eject. Default of None means playfield.

• **kwargs – unused

Returns True if there are balls to eject. False if this device is empty.

entrance(**kwargs)
Event handler for entrance events.

expected_ball_received()
Handle an expected ball.

find_available_ball_in_path(start)
Try to remove available ball at the end of the path.

find_next_trough()
Find next trough after device.

find_one_available_ball(path=deque([]))
Find a path to a source device which has at least one available ball.

find_path_to_target(target)
Find a path to this target.

handle_mechanial_eject_during_idle()
Handle mechanical eject.

hold(**kwargs)
Event handler for hold event.

classmethod is_playfield()
Return True if this ball device is a Playfield-type device, False if it’s a regular ball device.

lost_ejected_ball(target)
Handle an outgoing lost ball.

lost_idle_ball()
Lost an ball while the device was idle.

lost_incoming_ball(source)
Handle lost ball which was confirmed to have left source.

raise_config_error(msg, error_no, *, context=None)
Raise a ConfigFileError exception.

remove_incoming_ball(incoming_ball: mpf.devices.ball_device.incoming_balls_handler.IncomingBall)
Remove a ball from the incoming balls queue.

7.3. API Reference 55

MPF Documentation Developer Documentation, Release 0.50.22

request_ball(balls=1, **kwargs)
Request that one or more balls is added to this device.

Parameters

• balls – Integer of the number of balls that should be added to this device. A value of -1
will cause this device to try to fill itself.

• **kwargs – unused

requested_balls
Return the number of requested balls.

set_eject_state(state)
Set the current device state.

setup_eject_chain(path, player_controlled=False)
Set up an eject chain.

setup_eject_chain_next_hop(path, player_controlled)
Set up one hop of the eject chain.

setup_player_controlled_eject(target=None)
Set up a player controlled eject.

state
Return the device state.

stop_device()
Stop device.

unexpected_ball_received()
Handle an unexpected ball.

wait_for_ready_to_receive(source)
Wait until this device is ready to receive a ball.

self.machine.ball_holds.*

class mpf.devices.ball_hold.BallHold(*args, **kwargs)
Bases: mpf.core.system_wide_device.SystemWideDevice, mpf.core.mode_device.
ModeDevice

Ball hold device which can be used to keep balls in ball devices and control their eject later on.

Accessing ball_holds in code

The device collection which contains the ball_holds in your machine is available via self.machine.
ball_holds. For example, to access one called “foo”, you would use self.machine.ball_holds.
foo. You can also access ball_holds in dictionary form, e.g. self.machine.ball_holds['foo'].

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

Methods & Attributes

Ball_holds have the following methods & attributes available. Note that methods & attributes inherited from
base classes are not included here.

56 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

disable(**kwargs)
Disable the hold.

If the hold is not enabled, no balls will be held.

Parameters **kwargs – unused

enable(**kwargs)
Enable the hold.

If the hold is not enabled, no balls will be held.

Parameters **kwargs – unused

is_full()
Return true if hold is full.

raise_config_error(msg, error_no, *, context=None)
Raise a ConfigFileError exception.

release_all(**kwargs)
Release all balls in hold.

release_balls(balls_to_release)
Release all balls and return the actual amount of balls released.

Parameters balls_to_release – number of ball to release from hold

release_one(**kwargs)
Release one ball.

Parameters **kwargs – unused

release_one_if_full(**kwargs)
Release one ball if hold is full.

remaining_space_in_hold()
Return the remaining capacity of the hold.

reset(**kwargs)
Reset the hold.

Will release held balls. Device status will stay the same (enabled/disabled). It will wait for those balls to
drain and block ball_ending until they do. Those balls are not included in ball_in_play.

Parameters **kwargs – unused

self.machine.ball_locks.*

class mpf.devices.ball_lock.BallLock(*args, **kwargs)
Bases: mpf.core.system_wide_device.SystemWideDevice, mpf.core.mode_device.
ModeDevice

Ball lock device which can be used to keep balls in ball devices and control their eject later on.

Accessing ball_locks in code

The device collection which contains the ball_locks in your machine is available via self.machine.
ball_locks. For example, to access one called “foo”, you would use self.machine.ball_locks.
foo. You can also access ball_locks in dictionary form, e.g. self.machine.ball_locks['foo'].

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

7.3. API Reference 57

MPF Documentation Developer Documentation, Release 0.50.22

Methods & Attributes

Ball_locks have the following methods & attributes available. Note that methods & attributes inherited from
base classes are not included here.

disable(**kwargs)
Disable the lock.

If the lock is not enabled, no balls will be locked.

Parameters **kwargs – unused

enable(**kwargs)
Enable the lock.

If the lock is not enabled, no balls will be locked.

Parameters **kwargs – unused

is_full()
Return true if lock is full.

raise_config_error(msg, error_no, *, context=None)
Raise a ConfigFileError exception.

release_all_balls()
Release all balls in lock.

release_balls(balls_to_release)
Release all balls and return the actual amount of balls released.

Parameters balls_to_release – number of ball to release from lock

release_one(**kwargs)
Release one ball.

Parameters **kwargs – unused

release_one_if_full(**kwargs)
Release one ball if lock is full.

remaining_space_in_lock()
Return the remaining capacity of the lock.

reset(**kwargs)
Reset the lock.

Will release locked balls. Device will status will stay the same (enabled/disabled). It will wait for those
balls to drain and block ball_ending until they did. Those balls are not included in ball_in_play.

Parameters **kwargs – unused

self.machine.ball_saves.*

class mpf.devices.ball_save.BallSave(*args, **kwargs)
Bases: mpf.core.system_wide_device.SystemWideDevice, mpf.core.mode_device.
ModeDevice

Ball save device which will give back the ball within a certain time.

58 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

Accessing ball_saves in code

The device collection which contains the ball_saves in your machine is available via self.machine.
ball_saves. For example, to access one called “foo”, you would use self.machine.ball_saves.
foo. You can also access ball_saves in dictionary form, e.g. self.machine.ball_saves['foo'].

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

Methods & Attributes

Ball_saves have the following methods & attributes available. Note that methods & attributes inherited from
base classes are not included here.

delayed_eject(**kwargs)
Trigger eject of all scheduled balls.

disable(**kwargs)→ None
Disable ball save.

early_ball_save(**kwargs)→ None
Perform early ball save if enabled.

enable(**kwargs)→ None
Enable ball save.

raise_config_error(msg, error_no, *, context=None)
Raise a ConfigFileError exception.

timer_start(**kwargs)→ None
Start the timer.

This is usually called after the ball was ejected while the ball save may have been enabled earlier.

self.machine.coils.*

class mpf.devices.driver.Driver(machine: mpf.core.machine.MachineController, name: str)
Bases: mpf.core.system_wide_device.SystemWideDevice

Generic class that holds driver objects.

A ‘driver’ is any device controlled from a driver board which is typically the high-voltage stuff like coils and
flashers.

This class exposes the methods you should use on these driver types of devices. Each platform module (i.e.
P-ROC, FAST, etc.) subclasses this class to actually communicate with the physical hardware and perform the
actions.

Args: Same as the Device parent class

Accessing coils in code

The device collection which contains the coils in your machine is available via self.machine.coils. For
example, to access one called “foo”, you would use self.machine.coils.foo. You can also access coils
in dictionary form, e.g. self.machine.coils['foo'].

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

7.3. API Reference 59

MPF Documentation Developer Documentation, Release 0.50.22

Methods & Attributes

Coils have the following methods & attributes available. Note that methods & attributes inherited from base
classes are not included here.

disable(**kwargs)
Disable this driver.

enable(pulse_ms: int = None, pulse_power: float = None, hold_power: float = None, **kwargs)
Enable a driver by holding it ‘on’.

Parameters

• pulse_ms – The number of milliseconds the driver should be enabled for. If no value is
provided, the driver will be enabled for the value specified in the config dictionary.

• pulse_power – The pulse power. A float between 0.0 and 1.0.

• hold_power – The pulse power. A float between 0.0 and 1.0.

If this driver is configured with a holdpatter, then this method will use that holdpatter to pwm pulse the
driver.

If not, then this method will just enable the driver. As a safety precaution, if you want to enable() this
driver without pwm, then you have to add the following option to this driver in your machine configuration
files:

allow_enable: True

get_and_verify_hold_power(hold_power: Optional[float])→ float
Return the hold power to use.

If hold_power is None it will use the default_hold_power. Additionally it will verify the limits.

get_and_verify_pulse_ms(pulse_ms: Optional[int])→ int
Return and verify pulse_ms to use.

If pulse_ms is None return the default.

get_and_verify_pulse_power(pulse_power: Optional[float])→ float
Return the pulse power to use.

If pulse_power is None it will use the default_pulse_power. Additionally it will verify the limits.

pulse(pulse_ms: int = None, pulse_power: float = None, max_wait_ms: int = None, **kwargs)→ int
Pulse this driver.

Parameters

• pulse_ms – The number of milliseconds the driver should be enabled for. If no value is
provided, the driver will be enabled for the value specified in the config dictionary.

• pulse_power – The pulse power. A float between 0.0 and 1.0.

raise_config_error(msg, error_no, *, context=None)
Raise a ConfigFileError exception.

self.machine.combo_switches.*

class mpf.devices.combo_switch.ComboSwitch(*args, **kwargs)
Bases: mpf.core.system_wide_device.SystemWideDevice, mpf.core.mode_device.
ModeDevice

Combo Switch device.

60 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

Accessing combo_switches in code

The device collection which contains the combo_switches in your machine is available via self.
machine.combo_switches. For example, to access one called “foo”, you would use self.machine.
combo_switches.foo. You can also access combo_switches in dictionary form, e.g. self.machine.
combo_switches['foo'].

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

Methods & Attributes

Combo_switches have the following methods & attributes available. Note that methods & attributes inherited
from base classes are not included here.

enable(**kwarg)→ None
Enable handler.

raise_config_error(msg, error_no, *, context=None)
Raise a ConfigFileError exception.

state
Return current state.

self.machine.counters.*

class mpf.devices.logic_blocks.Counter(machine: mpf.core.machine.MachineController,
name: str)

Bases: mpf.devices.logic_blocks.LogicBlock

A type of LogicBlock that tracks multiple hits of a single event.

This counter can be configured to track hits towards a specific end-goal (like number of tilt hits to tilt), or it can
be an open-ended count (like total number of ramp shots).

It can also be configured to count up or to count down, and can have a configurable counting interval.

Accessing counters in code

The device collection which contains the counters in your machine is available via self.machine.
counters. For example, to access one called “foo”, you would use self.machine.counters.foo.
You can also access counters in dictionary form, e.g. self.machine.counters['foo'].

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

Methods & Attributes

Counters have the following methods & attributes available. Note that methods & attributes inherited from base
classes are not included here.

complete()
Mark this logic block as complete.

Posts the ‘events_when_complete’ events and optionally restarts this logic block or disables it, depending
on this block’s configuration settings.

completed
Return if completed.

7.3. API Reference 61

MPF Documentation Developer Documentation, Release 0.50.22

count(**kwargs)
Increase the hit progress towards completion.

This method is also automatically called when one of the count_events is posted.

disable(**kwargs)
Disable this logic block.

Automatically called when one of the disable_event events is posted. Can also manually be called.

enable(**kwargs)
Enable this logic block.

Automatically called when one of the enable_event events is posted. Can also manually be called.

enabled
Return if enabled.

get_start_value()→ int
Return start count.

raise_config_error(msg, error_no, *, context=None)
Raise a ConfigFileError exception.

reset(**kwargs)
Reset the progress towards completion of this logic block.

Automatically called when one of the reset_event events is called. Can also be manually called.

restart(**kwargs)
Restart this logic block by calling reset() and enable().

Automatically called when one of the restart_event events is called. Can also be manually called.

stop_ignoring_hits(**kwargs)
Cause the Counter to stop ignoring subsequent hits that occur within the ‘multiple_hit_window’.

Automatically called when the window time expires. Can safely be manually called.

value
Return value or None if that is currently not possible.

self.machine.digital_outputs.*

class mpf.devices.digital_output.DigitalOutput(machine:
mpf.core.machine.MachineController,
name: str)

Bases: mpf.core.system_wide_device.SystemWideDevice

A digital output on either a light or driver platform.

Accessing digital_outputs in code

The device collection which contains the digital_outputs in your machine is available via self.machine.
digital_outputs. For example, to access one called “foo”, you would use self.machine.
digital_outputs.foo. You can also access digital_outputs in dictionary form, e.g. self.machine.
digital_outputs['foo'].

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

62 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

Methods & Attributes

Digital_outputs have the following methods & attributes available. Note that methods & attributes inherited
from base classes are not included here.

disable(**kwargs)
Disable digital output.

enable(**kwargs)
Enable digital output.

raise_config_error(msg, error_no, *, context=None)
Raise a ConfigFileError exception.

self.machine.diverters.*

class mpf.devices.diverter.Diverter(*args, **kwargs)
Bases: mpf.core.system_wide_device.SystemWideDevice

Represents a diverter in a pinball machine.

Args: Same as the Device parent class.

Accessing diverters in code

The device collection which contains the diverters in your machine is available via self.machine.
diverters. For example, to access one called “foo”, you would use self.machine.diverters.foo.
You can also access diverters in dictionary form, e.g. self.machine.diverters['foo'].

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

Methods & Attributes

Diverters have the following methods & attributes available. Note that methods & attributes inherited from base
classes are not included here.

activate(**kwargs)
Physically activate this diverter’s coil.

deactivate(**kwargs)
Deactivate this diverter.

This method will disable the activation_coil, and (optionally) if it’s configured with a deactivation coil, it
will pulse it.

disable(auto=False, **kwargs)
Disable this diverter.

This method will remove the hardware rule if this diverter is activated via a hardware switch.

Parameters

• auto – Boolean value which is used to indicate whether this diverter disabled itself auto-
matically. This is passed to the event which is posted.

• **kwargs – This is here because this disable method is called by whatever event the
game programmer specifies in their machine configuration file, so we don’t know what
event that might be or whether it has random kwargs attached to it.

7.3. API Reference 63

MPF Documentation Developer Documentation, Release 0.50.22

enable(auto=False, **kwargs)
Enable this diverter.

Parameters

• auto – Boolean value which is used to indicate whether this diverter enabled itself auto-
matically. This is passed to the event which is posted.

• **kwargs – unused

If an ‘activation_switches’ is configured, then this method writes a hardware autofire rule to the pinball
controller which fires the diverter coil when the switch is activated.

If no activation_switches is specified, then the diverter is activated immediately.

raise_config_error(msg, error_no, *, context=None)
Raise a ConfigFileError exception.

reset(**kwargs)
Reset and deactivate the diverter.

schedule_deactivation()
Schedule a delay to deactivate this diverter.

self.machine.dmds.*

class mpf.devices.dmd.Dmd(machine, name)
Bases: mpf.core.system_wide_device.SystemWideDevice

A physical DMD.

Accessing dmds in code

The device collection which contains the dmds in your machine is available via self.machine.dmds. For
example, to access one called “foo”, you would use self.machine.dmds.foo. You can also access dmds
in dictionary form, e.g. self.machine.dmds['foo'].

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

Methods & Attributes

Dmds have the following methods & attributes available. Note that methods & attributes inherited from base
classes are not included here.

raise_config_error(msg, error_no, *, context=None)
Raise a ConfigFileError exception.

update(data: bytes)
Update data on the dmd.

Parameters data – bytes to send

self.machine.drop_target_banks.*

class mpf.devices.drop_target.DropTargetBank(*args, **kwargs)
Bases: mpf.core.system_wide_device.SystemWideDevice, mpf.core.mode_device.
ModeDevice

64 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

A bank of drop targets in a pinball machine by grouping together multiple DropTarget class devices.

Accessing drop_target_banks in code

The device collection which contains the drop_target_banks in your machine is available via self.machine.
drop_target_banks. For example, to access one called “foo”, you would use self.machine.
drop_target_banks.foo. You can also access drop_target_banks in dictionary form, e.g. self.
machine.drop_target_banks['foo'].

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

Methods & Attributes

Drop_target_banks have the following methods & attributes available. Note that methods & attributes inherited
from base classes are not included here.

enable(**kwarg)→ None
Enable handler.

member_target_change()
Handle that a member drop target has changed state.

This method causes this group to update its down and up counts and complete status.

raise_config_error(msg, error_no, *, context=None)
Raise a ConfigFileError exception.

reset(**kwargs)
Reset this bank of drop targets.

This method has some intelligence to figure out what coil(s) it should fire. It builds up a set by looking
at its own reset_coil and reset_coils settings, and also scanning through all the member drop targets and
collecting their coils. Then it pulses each of them. (This coil list is a “set” which means it only sends a
single pulse to each coil, even if each drop target is configured with its own coil.)

self.machine.drop_targets.*

class mpf.devices.drop_target.DropTarget(*args, **kwargs)
Bases: mpf.core.system_wide_device.SystemWideDevice

Represents a single drop target in a pinball machine.

Args: Same as the Target parent class

Accessing drop_targets in code

The device collection which contains the drop_targets in your machine is available via self.machine.
drop_targets. For example, to access one called “foo”, you would use self.machine.
drop_targets.foo. You can also access drop_targets in dictionary form, e.g. self.machine.
drop_targets['foo'].

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

7.3. API Reference 65

MPF Documentation Developer Documentation, Release 0.50.22

Methods & Attributes

Drop_targets have the following methods & attributes available. Note that methods & attributes inherited from
base classes are not included here.

add_to_bank(bank)
Add this drop target to a drop target bank.

This allows the bank to update its status based on state changes to this drop target.

Parameters bank – DropTargetBank object to add this drop target to.

disable_keep_up(**kwargs)
No longer keep up the target up.

enable_keep_up(**kwargs)
Keep the target up by enabling the coil.

knockdown(**kwargs)
Pulse the knockdown coil to knock down this drop target.

raise_config_error(msg, error_no, *, context=None)
Raise a ConfigFileError exception.

remove_from_bank(bank)
Remove the DropTarget from a bank.

Parameters bank – DropTargetBank object to remove

reset(**kwargs)
Reset this drop target.

If this drop target is configured with a reset coil, then this method will pulse that coil. If not, then it checks
to see if this drop target is part of a drop target bank, and if so, it calls the reset() method of the drop target
bank.

This method does not reset the target profile, however, the switch event handler should reset the target
profile on its own when the drop target physically moves back to the up position.

self.machine.dual_wound_coils.*

class mpf.devices.dual_wound_coil.DualWoundCoil(machine, name)
Bases: mpf.core.system_wide_device.SystemWideDevice

An instance of a dual wound coil which consists of two coils.

Accessing dual_wound_coils in code

The device collection which contains the dual_wound_coils in your machine is available via self.machine.
dual_wound_coils. For example, to access one called “foo”, you would use self.machine.
dual_wound_coils.foo. You can also access dual_wound_coils in dictionary form, e.g. self.
machine.dual_wound_coils['foo'].

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

66 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

Methods & Attributes

Dual_wound_coils have the following methods & attributes available. Note that methods & attributes inherited
from base classes are not included here.

disable(**kwargs)
Disable a driver.

enable(**kwargs)
Enable a dual wound coil.

Pulse main coil and enable hold coil.

pulse(milliseconds: int = None, power: float = None, **kwargs)
Pulse this driver.

Parameters

• milliseconds – The number of milliseconds the driver should be enabled for. If no
value is provided, the driver will be enabled for the value specified in the config dictionary.

• power – A multiplier that will be applied to the default pulse time, typically a float be-
tween 0.0 and 1.0. (Note this is can only be used if milliseconds is also specified.)

raise_config_error(msg, error_no, *, context=None)
Raise a ConfigFileError exception.

self.machine.extra_ball_groups.*

class mpf.devices.extra_ball_group.ExtraBallGroup(*args, **kwargs)
Bases: mpf.core.system_wide_device.SystemWideDevice

Tracks and manages groups of extra balls devices.

Accessing extra_ball_groups in code

The device collection which contains the extra_ball_groups in your machine is available via self.machine.
extra_ball_groups. For example, to access one called “foo”, you would use self.machine.
extra_ball_groups.foo. You can also access extra_ball_groups in dictionary form, e.g. self.
machine.extra_ball_groups['foo'].

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

Methods & Attributes

Extra_ball_groups have the following methods & attributes available. Note that methods & attributes inherited
from base classes are not included here.

award(posted_unlit_events=False, **kwargs)
Immediately awards an extra ball.

This event first checks to make sure the limits of the max extra balls have not been exceeded and that this
group is enabled.

Note that this method will work even if this group does not have any extra balls or extra balls lit. You can
use this to directly award an extra ball.

award_disabled()
Post the events when an extra ball connect be awarded.

7.3. API Reference 67

MPF Documentation Developer Documentation, Release 0.50.22

award_lit(**kwargs)
Award a lit extra ball.

If the player does not have any lit extra balls, this method does nothing.

enabled
Return whether this extra ball group is enabled.

This attribute considers the enabled setting plus the max balls per game and ball settings.

is_ok_to_light()
Check if it’s possible to light an extra ball.

Returns True of False

This method checks to see if the group is enabled and whether the max_lit setting has been exceeded.

light(**kwargs)
Light the extra ball for possible collection by the player.

This method checks that the group is enabled and that the max lit value has not been exceeded. If so, this
method will post the extra ball disabled events.

raise_config_error(msg, error_no, *, context=None)
Raise a ConfigFileError exception.

self.machine.extra_balls.*

class mpf.devices.extra_ball.ExtraBall(*args, **kwargs)
Bases: mpf.core.mode_device.ModeDevice

An extra ball which can be awarded once per player.

Accessing extra_balls in code

The device collection which contains the extra_balls in your machine is available via self.machine.
extra_balls. For example, to access one called “foo”, you would use self.machine.extra_balls.
foo. You can also access extra_balls in dictionary form, e.g. self.machine.extra_balls['foo'].

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

Methods & Attributes

Extra_balls have the following methods & attributes available. Note that methods & attributes inherited from
base classes are not included here.

award(**kwargs)
Award extra ball to player (if enabled).

enable(**kwarg)→ None
Enable handler.

enabled
Return whether this extra ball group is enabled.

This takes into consideration the enabled setting plus the max balls per game setting.

group = None
The ExtraBallGroup this ExtraBall belongs to, or None.

68 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

is_ok_to_award()
Check whether this extra ball can be awarded.

This method takes into consideration whether this extra ball is enabled, whether the max_per_game has
been exceeded, and, if this extra ball is a member of a group, whether the group is enabled and will allow
an additional extra ball to be awarded.

Returns True or False

is_ok_to_light()
Check whether this extra ball can be lit.

This method takes into consideration whether this extra ball is enabled, and, if this extra ball is a member
of a group, whether the group is enabled and will allow an additional extra ball to lit.

Returns True or False

light(**kwargs)
Light an extra ball for potential collection by the player.

Lighting an extra ball will immediately increase count against the max_per_game setting, even if the
extra ball is a member of a group that’s disabled or if the player never actually collects the extra ball.

Note that this only really does anything if this extra ball is a member of a group.

player = None
The current player

raise_config_error(msg, error_no, *, context=None)
Raise a ConfigFileError exception.

self.machine.flippers.*

class mpf.devices.flipper.Flipper(*args, **kwargs)
Bases: mpf.core.system_wide_device.SystemWideDevice

Represents a flipper in a pinball machine. Subclass of Device.

Contains several methods for actions that can be performed on this flipper, like enable(), disable(), etc.

Flippers have several options, including player buttons, EOS swtiches, multiple coil options (pulsing, hold coils,
etc.)

Parameters

• machine – A reference to the machine controller instance.

• name – A string of the name you’ll refer to this flipper object as.

Accessing flippers in code

The device collection which contains the flippers in your machine is available via self.machine.
flippers. For example, to access one called “foo”, you would use self.machine.flippers.foo.
You can also access flippers in dictionary form, e.g. self.machine.flippers['foo'].

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

7.3. API Reference 69

MPF Documentation Developer Documentation, Release 0.50.22

Methods & Attributes

Flippers have the following methods & attributes available. Note that methods & attributes inherited from base
classes are not included here.

disable(**kwargs)
Disable the flipper.

This method makes it so the cabinet flipper buttons no longer control the flippers. Used when no game is
active and when the player has tilted.

enable(**kwargs)
Enable the flipper by writing the necessary hardware rules to the hardware controller.

The hardware rules for coils can be kind of complex given all the options, so we’ve mapped all the options
out here. We literally have methods to enable the various rules based on the rule letters here, which we’ve
implemented below. Keeps it easy to understand. :)

Note there’s a platform feature saved at: self.machine.config[‘platform’][‘hw_enable_auto_disable’]. If
True, it means that the platform hardware rules will automatically disable a coil that has been enabled
when the trigger switch is disabled. If False, it means the hardware platform needs its own rule to disable
the coil when the switch is disabled. Methods F and G below check for that feature setting and will not be
applied to the hardware if it’s True.

Two coils, using EOS switch to indicate the end of the power stroke: Rule Type Coil Switch Action A.
Enable Main Button active D. Enable Hold Button active E. Disable Main EOS active

One coil, using EOS switch (not implemented): Rule Type Coil Switch Action A. Enable Main Button
active H. PWM Main EOS active

Two coils, not using EOS switch: Rule Type Coil Switch Action B. Pulse Main Button active D. Enable
Hold Button active

One coil, not using EOS switch: Rule Type Coil Switch Action C. Pulse/PWM Main button active

Use EOS switch for safety (for platforms that support mutiple switch rules). Note that this rule is the letter
“i”, not a numeral 1. I. Enable power if button is active and EOS is not active

raise_config_error(msg, error_no, *, context=None)
Raise a ConfigFileError exception.

sw_flip(**kwargs)
Activate the flipper via software as if the flipper button was pushed.

This is needed because the real flipper activations are handled in hardware, so if you want to flip the flippers
with the keyboard or OSC interfaces, you have to call this method.

Note this method will keep this flipper enabled until you call sw_release().

sw_release(**kwargs)
Deactive the flipper via software as if the flipper button was released.

See the documentation for sw_flip() for details.

self.machine.hardware_sound_systems.*

class mpf.devices.hardware_sound_system.HardwareSoundSystem(machine, name)
Bases: mpf.core.system_wide_device.SystemWideDevice

Hardware sound system using in EM and SS machines.

70 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

Accessing hardware_sound_systems in code

The device collection which contains the hardware_sound_systems in your machine is available via self.
machine.hardware_sound_systems. For example, to access one called “foo”, you would use self.
machine.hardware_sound_systems.foo. You can also access hardware_sound_systems in dictionary
form, e.g. self.machine.hardware_sound_systems['foo'].

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

Methods & Attributes

Hardware_sound_systems have the following methods & attributes available. Note that methods & attributes
inherited from base classes are not included here.

decrease_volume(volume: float)
Increase volume.

increase_volume(volume: float)
Increase volume.

play(sound_number: int)
Play a sound.

play_file(file: str, platform_options)
Play a sound file.

raise_config_error(msg, error_no, *, context=None)
Raise a ConfigFileError exception.

set_volume(volume: float)
Set volume.

stop_all_sounds()
Stop all sounds.

text_to_speech(text: str, platform_options)
Text to speech output.

self.machine.kickbacks.*

class mpf.devices.kickback.Kickback(*args, **kwargs)
Bases: mpf.devices.autofire.AutofireCoil

A kickback device which will fire a ball back into the playfield.

Accessing kickbacks in code

The device collection which contains the kickbacks in your machine is available via self.machine.
kickbacks. For example, to access one called “foo”, you would use self.machine.kickbacks.foo.
You can also access kickbacks in dictionary form, e.g. self.machine.kickbacks['foo'].

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

7.3. API Reference 71

MPF Documentation Developer Documentation, Release 0.50.22

Methods & Attributes

Kickbacks have the following methods & attributes available. Note that methods & attributes inherited from
base classes are not included here.

disable(**kwargs)
Disable the autofire device.

This is typically called at the end of a ball and when a tilt event happens.

Parameters **kwargs – Not used, just included so this method can be used as an event call-
back.

enable(**kwargs)
Enable the autofire device.

This causes the coil to respond to the switch hits. This is typically called when a ball starts to enable the
slingshots, pops, etc.

Note that there are several options for both the coil and the switch which can be incorporated into this
rule, including recycle times, switch debounce, reversing the switch (fire the coil when the switch goes
inactive), etc. These rules vary by hardware platform. See the user documentation for the hardware
platform for details.

Parameters **kwargs – Not used, just included so this method can be used as an event call-
back.

raise_config_error(msg, error_no, *, context=None)
Raise a ConfigFileError exception.

self.machine.light_rings.*

class mpf.devices.light_group.LightRing(machine: mpf.core.machine.MachineController,
name)

Bases: mpf.devices.light_group.LightGroup

A light ring.

Accessing light_rings in code

The device collection which contains the light_rings in your machine is available via self.machine.
light_rings. For example, to access one called “foo”, you would use self.machine.light_rings.
foo. You can also access light_rings in dictionary form, e.g. self.machine.light_rings['foo'].

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

Methods & Attributes

Light_rings have the following methods & attributes available. Note that methods & attributes inherited from
base classes are not included here.

color(color, fade_ms=None, priority=0, key=None)
Call color on all lights in this group.

get_token()
Return all lights in group as token.

raise_config_error(msg, error_no, *, context=None)
Raise a ConfigFileError exception.

72 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

self.machine.light_stripes.*

class mpf.devices.light_group.LightStrip(machine: mpf.core.machine.MachineController,
name)

Bases: mpf.devices.light_group.LightGroup

A light stripe.

Accessing light_stripes in code

The device collection which contains the light_stripes in your machine is available via self.machine.
light_stripes. For example, to access one called “foo”, you would use self.machine.
light_stripes.foo. You can also access light_stripes in dictionary form, e.g. self.machine.
light_stripes['foo'].

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

Methods & Attributes

Light_stripes have the following methods & attributes available. Note that methods & attributes inherited from
base classes are not included here.

color(color, fade_ms=None, priority=0, key=None)
Call color on all lights in this group.

get_token()
Return all lights in group as token.

raise_config_error(msg, error_no, *, context=None)
Raise a ConfigFileError exception.

self.machine.lights.*

class mpf.devices.light.Light(*args, **kwargs)
Bases: mpf.core.system_wide_device.SystemWideDevice, mpf.devices.
device_mixins.DevicePositionMixin

A light in a pinball machine.

Accessing lights in code

The device collection which contains the lights in your machine is available via self.machine.lights.
For example, to access one called “foo”, you would use self.machine.lights.foo. You can also access
lights in dictionary form, e.g. self.machine.lights['foo'].

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

Methods & Attributes

Lights have the following methods & attributes available. Note that methods & attributes inherited from base
classes are not included here.

clear_stack()
Remove all entries from the stack and resets this light to ‘off’.

7.3. API Reference 73

MPF Documentation Developer Documentation, Release 0.50.22

color(color, fade_ms=None, priority=0, key=None)
Add or update a color entry in this light’s stack.

Calling this methods is how you tell this light what color you want it to be.

Parameters

• color – RGBColor() instance, or a string color name, hex value, or 3-integer list/tuple of
colors.

• fade_ms – Int of the number of ms you want this light to fade to the color in. A value of
0 means it’s instant. A value of None (the default) means that it will use this light’s and/or
the machine’s default fade_ms setting.

• priority – Int value of the priority of these incoming settings. If this light has current
settings in the stack at a higher priority, the settings you’re adding here won’t take effect.
However they’re still added to the stack, so if the higher priority settings are removed, then
the next-highest apply.

• key – An arbitrary identifier (can be any immutable object) that’s used to identify these
settings for later removal. If any settings in the stack already have this key, those settings
will be replaced with these new settings.

color_correct(color)
Apply the current color correction profile to the color passed.

Parameters color – The RGBColor() instance you want to get color corrected.

Returns An updated RGBColor() instance with the current color correction profile applied.

Note that if there is no current color correction profile applied, the returned color will be the same as the
color that was passed.

fade_in_progress
Return true if a fade is in progress.

gamma_correct(color)
Apply max brightness correction to color.

Parameters color – The RGBColor() instance you want to have gamma applied.

Returns An updated RGBColor() instance with gamma corrected.

get_color()
Return an RGBColor() instance of the ‘color’ setting of the highest color setting in the stack.

This is usually the same color as the physical light, but not always (since physical lights are updated once
per frame, this value could vary.

Also note the color returned is the “raw” color that does has not had the color correction profile applied.

get_color_below(priority, key)
Return an RGBColor() instance of the ‘color’ setting of the highest color below a certain key.

Similar to get_color.

get_hw_numbers()
Return a list of all hardware driver numbers.

off(fade_ms=None, priority=0, key=None, **kwargs)
Turn light off.

Parameters

• key – key for removal later on

74 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

• priority – priority on stack

• fade_ms – duration of fade

on(brightness=None, fade_ms=None, priority=0, key=None, **kwargs)
Turn light on.

Parameters

• key – key for removal later on

• priority – priority on stack

• fade_ms – duration of fade

raise_config_error(msg, error_no, *, context=None)
Raise a ConfigFileError exception.

remove_from_stack_by_key(key, fade_ms=None)
Remove a group of color settings from the stack.

Parameters key – The key of the settings to remove (based on the ‘key’ parameter that was
originally passed to the color() method.)

This method triggers a light update, so if the highest priority settings were removed, the light will be
updated with whatever’s below it. If no settings remain after these are removed, the light will turn off.

stack = None
A list of dicts which represents different commands that have come in to set this light to a certain color
(and/or fade). Each entry in the list contains the following key/value pairs:

priority: The relative priority of this color command. Higher numbers take precedent, and the highest
priority entry will be the command that’s currently active. In the event of a tie, whichever entry was
added last wins (based on ‘start_time’ below).

start_time: The clock time when this command was added. Primarily used to calculate fades, but also
used as a tie-breaker for multiple entries with the same priority.

start_color: RGBColor() of the color of this light when this command came in.

dest_time: Clock time that represents when a fade (from start_color to dest_color) will be done. If this is
0, that means there is no fade. When a fade is complete, this value is reset to 0.

dest_color: RGBColor() of the destination this light is fading to. If a command comes in with no fade,
then this will be the same as the ‘color’ below.

key: An arbitrary unique identifier to keep multiple entries in the stack separate. If a new color command
comes in with a key that already exists for an entry in the stack, that entry will be replaced by the new
entry. The key is also used to remove entries from the stack (e.g. when shows or modes end and they
want to remove their commands from the light).

x
Get the X value from the config.

Returns the devices x position from config

y
Get the Y value from the config.

Returns the devices y position from config

z
Get the Z value from the config.

Returns the devices z position from config

7.3. API Reference 75

MPF Documentation Developer Documentation, Release 0.50.22

self.machine.magnets.*

class mpf.devices.magnet.Magnet(*args, **kwargs)
Bases: mpf.core.system_wide_device.SystemWideDevice

Controls a playfield magnet in a pinball machine.

Accessing magnets in code

The device collection which contains the magnets in your machine is available via self.machine.
magnets. For example, to access one called “foo”, you would use self.machine.magnets.foo. You
can also access magnets in dictionary form, e.g. self.machine.magnets['foo'].

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

Methods & Attributes

Magnets have the following methods & attributes available. Note that methods & attributes inherited from base
classes are not included here.

disable(**kwargs)
Disable magnet.

enable(**kwargs)
Enable magnet.

fling_ball(**kwargs)
Fling the grabbed ball.

grab_ball(**kwargs)
Grab a ball.

raise_config_error(msg, error_no, *, context=None)
Raise a ConfigFileError exception.

release_ball(**kwargs)
Release the grabbed ball.

reset(**kwargs)
Release ball and disable magnet.

self.machine.motors.*

class mpf.devices.motor.Motor(machine, name)
Bases: mpf.core.system_wide_device.SystemWideDevice

A motor which can be controlled using drivers.

Accessing motors in code

The device collection which contains the motors in your machine is available via self.machine.motors.
For example, to access one called “foo”, you would use self.machine.motors.foo. You can also access
motors in dictionary form, e.g. self.machine.motors['foo'].

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

76 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

Methods & Attributes

Motors have the following methods & attributes available. Note that methods & attributes inherited from base
classes are not included here.

go_to_position(position, **kwargs)
Move motor to a specific position.

raise_config_error(msg, error_no, *, context=None)
Raise a ConfigFileError exception.

reset(**kwargs)
Go to reset position.

self.machine.multiball_locks.*

class mpf.devices.multiball_lock.MultiballLock(*args, **kwargs)
Bases: mpf.core.mode_device.ModeDevice

Ball lock device which locks balls for a multiball.

Accessing multiball_locks in code

The device collection which contains the multiball_locks in your machine is available via self.machine.
multiball_locks. For example, to access one called “foo”, you would use self.machine.
multiball_locks.foo. You can also access multiball_locks in dictionary form, e.g. self.machine.
multiball_locks['foo'].

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

Methods & Attributes

Multiball_locks have the following methods & attributes available. Note that methods & attributes inherited
from base classes are not included here.

disable(**kwargs)
Disable the lock.

If the lock is not enabled, no balls will be locked.

Parameters **kwargs – unused

enable(**kwargs)
Enable the lock.

If the lock is not enabled, no balls will be locked.

Parameters **kwargs – unused

is_virtually_full
Return true if lock is full.

locked_balls
Return the number of locked balls for the current player.

raise_config_error(msg, error_no, *, context=None)
Raise a ConfigFileError exception.

7.3. API Reference 77

MPF Documentation Developer Documentation, Release 0.50.22

remaining_virtual_space_in_lock
Return the remaining capacity of the lock.

reset_all_counts(**kwargs)
Reset the locked balls for all players.

reset_count_for_current_player(**kwargs)
Reset the locked balls for the current player.

self.machine.multiballs.*

class mpf.devices.multiball.Multiball(*args, **kwargs)
Bases: mpf.core.system_wide_device.SystemWideDevice, mpf.core.mode_device.
ModeDevice

Multiball device for MPF.

Accessing multiballs in code

The device collection which contains the multiballs in your machine is available via self.machine.
multiballs. For example, to access one called “foo”, you would use self.machine.multiballs.
foo. You can also access multiballs in dictionary form, e.g. self.machine.multiballs['foo'].

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

Methods & Attributes

Multiballs have the following methods & attributes available. Note that methods & attributes inherited from
base classes are not included here.

add_a_ball(**kwargs)
Add a ball if multiball has started.

disable(**kwargs)
Disable the multiball.

If the multiball is not enabled, it cannot start. Will not stop a running multiball.

Parameters **kwargs – unused

enable(**kwargs)
Enable the multiball.

If the multiball is not enabled, it cannot start.

Parameters **kwargs – unused

raise_config_error(msg, error_no, *, context=None)
Raise a ConfigFileError exception.

reset(**kwargs)
Reset the multiball and disable it.

Parameters **kwargs – unused

start(**kwargs)
Start multiball.

start_or_add_a_ball(**kwargs)
Start multiball or add a ball if multiball has started.

78 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

stop(**kwargs)
Stop shoot again.

self.machine.playfield_transfers.*

class mpf.devices.playfield_transfer.PlayfieldTransfer(machine, name)
Bases: mpf.core.system_wide_device.SystemWideDevice

Device which move a ball from one playfield to another.

Accessing playfield_transfers in code

The device collection which contains the playfield_transfers in your machine is available via self.machine.
playfield_transfers. For example, to access one called “foo”, you would use self.machine.
playfield_transfers.foo. You can also access playfield_transfers in dictionary form, e.g. self.
machine.playfield_transfers['foo'].

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

Methods & Attributes

Playfield_transfers have the following methods & attributes available. Note that methods & attributes inherited
from base classes are not included here.

raise_config_error(msg, error_no, *, context=None)
Raise a ConfigFileError exception.

transfer(**kwargs)
Transfer a ball to the target playfield.

self.machine.playfields.*

class mpf.devices.playfield.Playfield(*args, **kwargs)
Bases: mpf.core.system_wide_device.SystemWideDevice

One playfield in a pinball machine.

Accessing playfields in code

The device collection which contains the playfields in your machine is available via self.machine.
playfields. For example, to access one called “foo”, you would use self.machine.playfields.
foo. You can also access playfields in dictionary form, e.g. self.machine.playfields['foo'].

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

Methods & Attributes

Playfields have the following methods & attributes available. Note that methods & attributes inherited from base
classes are not included here.

add_ball(balls=1, source_device=None, player_controlled=False)
Add live ball(s) to the playfield.

Parameters

7.3. API Reference 79

MPF Documentation Developer Documentation, Release 0.50.22

• balls – Integer of the number of balls you’d like to add.

• source_device – Optional ball device object you’d like to add the ball(s) from.

• player_controlled – Boolean which specifies whether this event is player con-
trolled. (See not below for details)

Returns True if it’s able to process the add_ball() request, False if it cannot.

The source_device arg is included to give you an options for specifying the source of the ball(s) to be added.
This argument is optional, so if you don’t supply them then MPF will use the default_source_device of
this playfield.

This method does not increase the game controller’s count of the number of balls in play. So if you want to
add balls (like in a multiball scenario), you need to call this method along with self.machine.game.
add_balls_in_play().)

MPF tracks the number of balls in play separately from the actual balls on the playfield because there are
numerous situations where the two counts are not the same. For example, if a ball is in a VUK while some
animation is playing, there are no balls on the playfield but still one ball in play, or if the player has a
two-ball multiball and they shoot them both into locks, there are still two balls in play even though there
are no balls on the playfield. The opposite can also be true, like when the player tilts then there are still
balls on the playfield but no balls in play.

Explanation of the player_controlled parameter:

Set player_controlled to True to indicate that MPF should wait for the player to eject the ball from the
source_device rather than firing a coil. The logic works like this:

If the source_device does not have an eject_coil defined, then it’s assumed that player_controlled is the
only option. (e.g. this is a traditional plunger.) If the source_device does have an eject_coil defined, then
there are two ways the eject could work. (1) there could be a “launch” button of some kind that’s used
to fire the eject coil, or (2) the device could be the auto/manual combo style where there’s a mechanical
plunger but also a coil which can eject the ball.

If player_controlled is true and the device has an eject_coil, MPF will look for the
player_controlled_eject_tag and eject the ball when a switch with that tag is activated.

If there is no player_controlled_eject_tag, MPF assumes it’s a manual plunger and will wait for the ball to
disappear from the device based on the device’s ball count decreasing.

add_incoming_ball(incoming_ball: mpf.devices.ball_device.incoming_balls_handler.IncomingBall)
Track an incoming ball.

add_missing_balls(balls)
Notify the playfield that it probably received a ball which went missing elsewhere.

ball_arrived()
Confirm first ball in queue.

ball_search = None
An instance of mpf.core.ball_search.BallSearch which handles ball search for this playfield.

ball_search_block(**kwargs)
Block ball search for this playfield.

Blocking will disable ball search if it’s enabled or running, and will prevent ball search from enabling if
it’s disabled until ball_search_resume() is called.

ball_search_disable(**kwargs)
Disable ball search for this playfield.

80 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

If the ball search timer is running, it will stop and disable it. If an actual ball search process is running, it
will stop.

ball_search_enable(**kwargs)
Enable ball search for this playfield.

Note this does not start the ball search process, rather, it starts the timer running.

ball_search_unblock(**kwargs)
Unblock ball search for this playfield.

This will check to see if there are balls on the playfield, and if so, enable ball search.

balls
Return the number of balls on the playfield.

delay = None
An instance of mpf.core.delays.DelayManager which handles delays for this playfield.

expected_ball_received()
Handle an expected ball.

classmethod get_additional_ball_capacity()
Return the number of ball which can be added.

Used to find out how many more balls this device can hold. Since this is the playfield device, this method
always returns 999.

Returns: 999

classmethod is_playfield()
Return true since it is a playfield.

mark_playfield_active_from_device_action()
Mark playfield active because a device on the playfield detected activity.

raise_config_error(msg, error_no, *, context=None)
Raise a ConfigFileError exception.

remove_incoming_ball(incoming_ball: mpf.devices.ball_device.incoming_balls_handler.IncomingBall)
Stop tracking an incoming ball.

unexpected_ball_received()
Handle an unexpected ball.

static wait_for_ready_to_receive(source)
Playfield is always ready to receive.

self.machine.psus.*

class mpf.devices.power_supply_unit.PowerSupplyUnit(machine, name)
Bases: mpf.core.system_wide_device.SystemWideDevice

Represents a power supply in a pinball machine.

Accessing psus in code

The device collection which contains the psus in your machine is available via self.machine.psus. For
example, to access one called “foo”, you would use self.machine.psus.foo. You can also access psus
in dictionary form, e.g. self.machine.psus['foo'].

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

7.3. API Reference 81

MPF Documentation Developer Documentation, Release 0.50.22

Methods & Attributes

Psus have the following methods & attributes available. Note that methods & attributes inherited from base
classes are not included here.

get_wait_time_for_pulse(pulse_ms, max_wait_ms)→ int
Return a wait time for a pulse or 0.

notify_about_instant_pulse(pulse_ms)
Notify PSU about pulse.

raise_config_error(msg, error_no, *, context=None)
Raise a ConfigFileError exception.

self.machine.rgb_dmds.*

class mpf.devices.rgb_dmd.RgbDmd(machine, name)
Bases: mpf.core.system_wide_device.SystemWideDevice

A physical DMD.

Accessing rgb_dmds in code

The device collection which contains the rgb_dmds in your machine is available via self.machine.
rgb_dmds. For example, to access one called “foo”, you would use self.machine.rgb_dmds.foo.
You can also access rgb_dmds in dictionary form, e.g. self.machine.rgb_dmds['foo'].

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

Methods & Attributes

Rgb_dmds have the following methods & attributes available. Note that methods & attributes inherited from
base classes are not included here.

raise_config_error(msg, error_no, *, context=None)
Raise a ConfigFileError exception.

update(data: bytes)
Update data on the dmd.

Parameters data – bytes to send

self.machine.score_reel_groups.*

class mpf.devices.score_reel_group.ScoreReelGroup(machine, name)
Bases: mpf.core.system_wide_device.SystemWideDevice

Represents a logical grouping of score reels in a pinball machine.

Multiple individual ScoreReel object make up the individual digits of this group. This group also has support
for the blank zero “inserts” that some machines use. This is a subclass of mpf.core.device.Device.

82 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

Accessing score_reel_groups in code

The device collection which contains the score_reel_groups in your machine is available via self.machine.
score_reel_groups. For example, to access one called “foo”, you would use self.machine.
score_reel_groups.foo. You can also access score_reel_groups in dictionary form, e.g. self.
machine.score_reel_groups['foo'].

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

Methods & Attributes

Score_reel_groups have the following methods & attributes available. Note that methods & attributes inherited
from base classes are not included here.

classmethod chime(chime, **kwargs)
Pulse chime.

int_to_reel_list(value)
Convert an integer to a list of integers that represent each positional digit in this ScoreReelGroup.

The list returned is in reverse order. (See the example below.)

The list returned is customized for this ScoreReelGroup both in terms of number of elements and values
of None used to represent blank plastic zero inserts that are not controlled by a score reel unit.

For example, if you have a 5-digit score reel group that has 4 phyiscial reels in the tens through ten-
thousands position and a fake plastic “0” insert for the ones position, if you pass this method a value of
12300, it will return [None, 0, 3, 2, 1]

This method will pad shorter ints with zeros, and it will chop off leading digits for ints that are too long.
(For example, if you pass a value of 10000 to a ScoreReelGroup which only has 4 digits, the returns list
would correspond to 0000, since your score reel unit has rolled over.)

Parameters value – The interger value you’d like to convert.

Returns A list containing the values for each corresponding score reel, with the lowest reel digit
position in list position 0.

light(**kwargs)
Light up this ScoreReelGroup based on the ‘light_tag’ in its config.

raise_config_error(msg, error_no, *, context=None)
Raise a ConfigFileError exception.

set_value(value)
Reset the score reel group to display the value passed.

This method will “jump” the score reel group to display the value that’s passed as an it. (Note this “jump”
technique means it will just move the reels as fast as it can, and nonsensical values might show up on the
reel while the movement is in progress.)

This method is used to “reset” a reel group to all zeros at the beginning of a game, and can also be used to
reset a reel group that is confused or to switch a reel to the new player’s score if multiple players a sharing
the same reel group.

Note you can choose to pass either an integer representation of the value, or a value list.

Parameters value – An integer value of what the new displayed value (i.e. score) should be.
This is the default option if you only pass a single positional argument, e.g. set_value(2100).

unlight(**kwargs)
Turn off the lights for this ScoreReelGroup based on the ‘light_tag’ in its config.

7.3. API Reference 83

MPF Documentation Developer Documentation, Release 0.50.22

wait_for_ready()
Return a future which will be done when all reels reached their destination.

self.machine.score_reels.*

class mpf.devices.score_reel.ScoreReel(machine, name)
Bases: mpf.core.system_wide_device.SystemWideDevice

Represents an individual electro-mechanical score reel in a pinball machine.

Multiples reels of this class can be grouped together into ScoreReelGroups which collectively make up a display
like “Player 1 Score” or “Player 2 card value”, etc.

This device class is used for all types of mechanical number reels in a machine, including reels that have more
than ten numbers and that can move in multiple directions (such as the credit reel).

Accessing score_reels in code

The device collection which contains the score_reels in your machine is available via self.machine.
score_reels. For example, to access one called “foo”, you would use self.machine.score_reels.
foo. You can also access score_reels in dictionary form, e.g. self.machine.score_reels['foo'].

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

Methods & Attributes

Score_reels have the following methods & attributes available. Note that methods & attributes inherited from
base classes are not included here.

check_hw_switches()
Check all the value switches for this score reel.

This check only happens if self.ready is True. If the reel is not ready, it means another advance request has
come in after the initial one. In that case then the subsequent advance will call this method again when
after that advance is done.

If this method finds an active switch, it sets self.physical_value to that. Otherwise it sets it to -999. It will
also update self.assumed_value if it finds an active switch. Otherwise it leaves that value unchanged.

This method is automatically called (via a delay) after the reel advances. The delay is based on the config
value self.config[‘hw_confirm_time’].

TODO: What happens if there are multiple active switches? Currently it will return the highest one. Is that
ok?

raise_config_error(msg, error_no, *, context=None)
Raise a ConfigFileError exception.

set_destination_value(value)
Return the integer value of the destination this reel is moving to.

Args:

Returns: The value of the destination. If the current self.assumed_value is -999, this method will al-
ways return -999 since it doesn’t know where the reel is and therefore doesn’t know what the destina-
tion value would be.

stop(**kwargs)
Stop device.

84 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

wait_for_ready()
Return a future for ready.

self.machine.segment_displays.*

class mpf.devices.segment_display.SegmentDisplay(*args, **kwargs)
Bases: mpf.core.system_wide_device.SystemWideDevice

A physical segment display in a pinball machine.

Accessing segment_displays in code

The device collection which contains the segment_displays in your machine is available via self.machine.
segment_displays. For example, to access one called “foo”, you would use self.machine.
segment_displays.foo. You can also access segment_displays in dictionary form, e.g. self.
machine.segment_displays['foo'].

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

Methods & Attributes

Segment_displays have the following methods & attributes available. Note that methods & attributes inherited
from base classes are not included here.

add_text(text: str, priority: int = 0, key: str = None)→ None
Add text to display stack.

This will replace texts with the same key.

raise_config_error(msg, error_no, *, context=None)
Raise a ConfigFileError exception.

remove_text_by_key(key: str)
Remove entry from text stack.

set_flashing(flashing: bool)
Enable/Disable flashing.

self.machine.sequence_shots.*

class mpf.devices.sequence_shot.SequenceShot(machine, name)
Bases: mpf.core.system_wide_device.SystemWideDevice, mpf.core.mode_device.
ModeDevice

A device which represents a sequence shot.

Accessing sequence_shots in code

The device collection which contains the sequence_shots in your machine is available via self.machine.
sequence_shots. For example, to access one called “foo”, you would use self.machine.
sequence_shots.foo. You can also access sequence_shots in dictionary form, e.g. self.machine.
sequence_shots['foo'].

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

7.3. API Reference 85

MPF Documentation Developer Documentation, Release 0.50.22

Methods & Attributes

Sequence_shots have the following methods & attributes available. Note that methods & attributes inherited
from base classes are not included here.

cancel(**kwargs)
Reset all sequences.

enable(**kwarg)→ None
Enable handler.

raise_config_error(msg, error_no, *, context=None)
Raise a ConfigFileError exception.

self.machine.sequences.*

class mpf.devices.logic_blocks.Sequence(machine: mpf.core.machine.MachineController,
name: str)

Bases: mpf.devices.logic_blocks.LogicBlock

A type of LogicBlock which tracks many different events (steps) towards a goal.

The steps have to happen in order.

Accessing sequences in code

The device collection which contains the sequences in your machine is available via self.machine.
sequences. For example, to access one called “foo”, you would use self.machine.sequences.foo.
You can also access sequences in dictionary form, e.g. self.machine.sequences['foo'].

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

Methods & Attributes

Sequences have the following methods & attributes available. Note that methods & attributes inherited from
base classes are not included here.

complete()
Mark this logic block as complete.

Posts the ‘events_when_complete’ events and optionally restarts this logic block or disables it, depending
on this block’s configuration settings.

completed
Return if completed.

disable(**kwargs)
Disable this logic block.

Automatically called when one of the disable_event events is posted. Can also manually be called.

enable(**kwargs)
Enable this logic block.

Automatically called when one of the enable_event events is posted. Can also manually be called.

enabled
Return if enabled.

86 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

get_start_value()→ int
Return start step.

hit(step: int = None, **kwargs)
Increase the hit progress towards completion.

Automatically called when one of the count_events is posted. Can also manually be called.

raise_config_error(msg, error_no, *, context=None)
Raise a ConfigFileError exception.

reset(**kwargs)
Reset the progress towards completion of this logic block.

Automatically called when one of the reset_event events is called. Can also be manually called.

restart(**kwargs)
Restart this logic block by calling reset() and enable().

Automatically called when one of the restart_event events is called. Can also be manually called.

value
Return value or None if that is currently not possible.

self.machine.servos.*

class mpf.devices.servo.Servo(*args, **kwargs)
Bases: mpf.core.system_wide_device.SystemWideDevice

Represents a servo in a pinball machine.

Args: Same as the Device parent class.

Accessing servos in code

The device collection which contains the servos in your machine is available via self.machine.servos.
For example, to access one called “foo”, you would use self.machine.servos.foo. You can also access
servos in dictionary form, e.g. self.machine.servos['foo'].

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

Methods & Attributes

Servos have the following methods & attributes available. Note that methods & attributes inherited from base
classes are not included here.

go_to_position(position)
Move servo to position.

raise_config_error(msg, error_no, *, context=None)
Raise a ConfigFileError exception.

reset(**kwargs)
Go to reset position.

set_acceleration_limit(acceleration_limit)
Set acceleration parameter.

set_speed_limit(speed_limit)
Set speed parameter.

7.3. API Reference 87

MPF Documentation Developer Documentation, Release 0.50.22

self.machine.shot_groups.*

class mpf.devices.shot_group.ShotGroup(machine, name)
Bases: mpf.core.mode_device.ModeDevice

Represents a group of shots in a pinball machine by grouping together multiple Shot class devices.

This is used so you get get “group-level” functionality, like shot rotation, shot group completion, etc. This would
be used for a group of rollover lanes, a bank of standups, etc.

Accessing shot_groups in code

The device collection which contains the shot_groups in your machine is available via self.machine.
shot_groups. For example, to access one called “foo”, you would use self.machine.shot_groups.
foo. You can also access shot_groups in dictionary form, e.g. self.machine.shot_groups['foo'].

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

Methods & Attributes

Shot_groups have the following methods & attributes available. Note that methods & attributes inherited from
base classes are not included here.

disable(**kwargs)
Disable all member shots.

Parameters kwargs – passed to member shots

disable_rotation(**kwargs)
Disable shot rotation.

If disabled, rotation events do not actually rotate the shots.

enable(**kwargs)
Enable all member shots.

Parameters kwargs – passed to member shots

enable_rotation(**kwargs)
Enable shot rotation.

If disabled, rotation events do not actually rotate the shots.

raise_config_error(msg, error_no, *, context=None)
Raise a ConfigFileError exception.

reset(**kwargs)
Reset all member shots.

Parameters kwargs – passed to member shots

rotate(direction=None, **kwargs)
Rotate (or “shift”) the state of all the shots in this group.

This is used for things like lane change, where hitting the flipper button shifts all the states of the shots in
the group to the left or right.

This method actually transfers the current state of each shot profile to the left or the right, and the shot on
the end rolls over to the taret on the other end.

Parameters

88 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

• direction – String that specifies whether the rotation direction is to the left or right.
Values are ‘right’ or ‘left’. Default of None will cause the shot group to rotate in the
direction as specified by the rotation_pattern.

• states – A string of a state or a list of strings that represent the targets that will be
selected to rotate. If None (default), then all targets will be included.

• exclude_states – A string of a state or a list of strings that controls whether any
targets will not be rotated. (Any targets with an active profile in one of these states will
not be included in the rotation. Default is None which means all targets will be rotated)

• kwargs – unused

Note that this shot group must, and rotation_events for this shot group, must both be enabled for the
rotation events to work.

rotate_left(mode=None, **kwargs)
Rotate the state of the shots to the left.

This method is the same as calling rotate(‘left’)

Parameters kwargs – unused

rotate_right(mode=None, **kwargs)
Rotate the state of the shots to the right.

This method is the same as calling rotate(‘right’)

Parameters kwargs – unused

self.machine.shot_profiles.*

class mpf.devices.shot_profile.ShotProfile(machine: mpf.core.machine.MachineController,
name: str)

Bases: mpf.core.mode_device.ModeDevice, mpf.core.system_wide_device.
SystemWideDevice

A shot profile.

Accessing shot_profiles in code

The device collection which contains the shot_profiles in your machine is available via self.machine.
shot_profiles. For example, to access one called “foo”, you would use self.machine.
shot_profiles.foo. You can also access shot_profiles in dictionary form, e.g. self.machine.
shot_profiles['foo'].

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

Methods & Attributes

Shot_profiles have the following methods & attributes available. Note that methods & attributes inherited from
base classes are not included here.

enable(**kwarg)→ None
Enable handler.

raise_config_error(msg, error_no, *, context=None)
Raise a ConfigFileError exception.

7.3. API Reference 89

MPF Documentation Developer Documentation, Release 0.50.22

self.machine.shots.*

class mpf.devices.shot.Shot(machine, name)
Bases: mpf.core.enable_disable_mixin.EnableDisableMixin, mpf.core.
mode_device.ModeDevice

A device which represents a generic shot.

Accessing shots in code

The device collection which contains the shots in your machine is available via self.machine.shots. For
example, to access one called “foo”, you would use self.machine.shots.foo. You can also access shots
in dictionary form, e.g. self.machine.shots['foo'].

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

Methods & Attributes

Shots have the following methods & attributes available. Note that methods & attributes inherited from base
classes are not included here.

active_sequences = None
(id, current_position_index, next_switch)

Type List of tuples

advance(force=False, **kwargs)→ bool
Advance a shot profile forward.

If this profile is at the last step and configured to loop, it will roll over to the first step. If this profile is at
the last step and not configured to loop, this method has no effect.

disable(**kwargs)
Disable device.

enable(**kwargs)→ None
Enable device.

enabled
Return true if enabled.

hit(**kwargs)
Advance the currently-active shot profile.

Note that the shot must be enabled in order for this hit to be processed.

jump(state, force=True)
Jump to a certain state in the active shot profile.

Parameters

• state – int of the state number you want to jump to. Note that states are zero-based, so
the first state is 0.

• show_step – The step number that the associated light script should start playing at.
Useful with rotations so this shot can pick up right where it left off. Default is 1 (the first
step in the show)

monitor_enabled = False
Class attribute which specifies whether any monitors have been registered to track shots.

90 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

persist_enabled
Return if enabled is persisted.

profile
Return profile.

profile_name
Return profile name.

raise_config_error(msg, error_no, *, context=None)
Raise a ConfigFileError exception.

reset(**kwargs)
Reset the shot profile for the passed mode back to the first state (State 0) and reset all sequences.

state
Return current state index.

state_name
Return current state name.

self.machine.state_machines.*

class mpf.devices.state_machine.StateMachine(machine, name)
Bases: mpf.core.system_wide_device.SystemWideDevice, mpf.core.mode_device.
ModeDevice

A generic state machine.

Accessing state_machines in code

The device collection which contains the state_machines in your machine is available via self.machine.
state_machines. For example, to access one called “foo”, you would use self.machine.
state_machines.foo. You can also access state_machines in dictionary form, e.g. self.machine.
state_machines['foo'].

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

Methods & Attributes

State_machines have the following methods & attributes available. Note that methods & attributes inherited
from base classes are not included here.

enable(**kwarg)→ None
Enable handler.

raise_config_error(msg, error_no, *, context=None)
Raise a ConfigFileError exception.

state
Return the current state.

self.machine.steppers.*

class mpf.devices.stepper.Stepper(*args, **kwargs)
Bases: mpf.core.system_wide_device.SystemWideDevice

7.3. API Reference 91

MPF Documentation Developer Documentation, Release 0.50.22

Represents an stepper motor based axis in a pinball machine.

Args: Same as the Device parent class.

Accessing steppers in code

The device collection which contains the steppers in your machine is available via self.machine.
steppers. For example, to access one called “foo”, you would use self.machine.steppers.foo.
You can also access steppers in dictionary form, e.g. self.machine.steppers['foo'].

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

Methods & Attributes

Steppers have the following methods & attributes available. Note that methods & attributes inherited from base
classes are not included here.

current_position()
Return position in user units (vs microsteps).

home()
Home an axis, resetting 0 position.

move_abs_pos(position)
Move servo to position.

move_rel_pos(delta)
Move axis to a relative position.

move_vel_mode(velocity)
Move at a specific velocity indefinitely.

raise_config_error(msg, error_no, *, context=None)
Raise a ConfigFileError exception.

reset(**kwargs)
Stop Motor.

stop()
Stop motor.

self.machine.switches.*

class mpf.devices.switch.Switch(*args, **kwargs)
Bases: mpf.core.system_wide_device.SystemWideDevice, mpf.devices.
device_mixins.DevicePositionMixin

A switch in a pinball machine.

Accessing switches in code

The device collection which contains the switches in your machine is available via self.machine.
switches. For example, to access one called “foo”, you would use self.machine.switches.foo.
You can also access switches in dictionary form, e.g. self.machine.switches['foo'].

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

92 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

Methods & Attributes

Switches have the following methods & attributes available. Note that methods & attributes inherited from base
classes are not included here.

add_handler(callback, state=1, ms=0, return_info=False, callback_kwargs=None)
Add switch handler (callback) for this switch which is called when this switch state changes.

Note that this method just calls the Switch Controller’s add_switch_handler() method behind the
scenes.

Parameters

• callback – A callable method that will be called when the switch state changes.

• state – The state that the switch which change into which triggers the callback to be
called. Values are 0 or 1, with 0 meaning the switch changed to inactive, and 1 meaning
the switch changed to an active state.

• ms – How many milliseconds the switch needs to be in the new state before the callback
is called. Default is 0 which means that the callback will be called immediately. You
can use this setting as a form of software debounce, as the switch needs to be in the state
consistently before the callback is called.

• return_info – If True, the switch controller will pass the parameters of the switch
handler as arguments to the callback, including switch_name, state, and ms.

• callback_kwargs – Additional kwargs that will be passed with the callback.

hw_state = None
The physical hardware state of the switch. 1 = active, 0 = inactive. This is what the actual hardware is
reporting and does not consider whether a switch is NC or NO.

raise_config_error(msg, error_no, *, context=None)
Raise a ConfigFileError exception.

remove_handler(callback, state=1, ms=0)
Remove switch handler for this switch.

state = None
The logical state of a switch. 1 = active, 0 = inactive. This takes into consideration the NC or NO settings
for the switch.

x
Get the X value from the config.

Returns the devices x position from config

y
Get the Y value from the config.

Returns the devices y position from config

z
Get the Z value from the config.

Returns the devices z position from config

self.machine.timed_switches.*

class mpf.devices.timed_switch.TimedSwitch(*args, **kwargs)
Bases: mpf.core.system_wide_device.SystemWideDevice, mpf.core.mode_device.

7.3. API Reference 93

MPF Documentation Developer Documentation, Release 0.50.22

ModeDevice

Timed Switch device.

Accessing timed_switches in code

The device collection which contains the timed_switches in your machine is available via self.machine.
timed_switches. For example, to access one called “foo”, you would use self.machine.
timed_switches.foo. You can also access timed_switches in dictionary form, e.g. self.machine.
timed_switches['foo'].

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

Methods & Attributes

Timed_switches have the following methods & attributes available. Note that methods & attributes inherited
from base classes are not included here.

enable(**kwarg)→ None
Enable handler.

raise_config_error(msg, error_no, *, context=None)
Raise a ConfigFileError exception.

self.machine.timers.*

class mpf.devices.timer.Timer(*args, **kwargs)
Bases: mpf.core.mode_device.ModeDevice

Parent class for a mode timer.

Parameters

• machine – The main MPF MachineController object.

• name – The string name of this timer.

Accessing timers in code

The device collection which contains the timers in your machine is available via self.machine.timers.
For example, to access one called “foo”, you would use self.machine.timers.foo. You can also access
timers in dictionary form, e.g. self.machine.timers['foo'].

You can also get devices by tag or hardware number. See the DeviceCollection documentation for details.

Methods & Attributes

Timers have the following methods & attributes available. Note that methods & attributes inherited from base
classes are not included here.

add(timer_value, **kwargs)
Add ticks to this timer.

Parameters

• timer_value – The number of ticks you want to add to this timer’s current value.

94 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

• kwargs – Not used in this method. Only exists since this method is often registered as an
event handler which may contain additional keyword arguments.

change_tick_interval(change=0.0, **kwargs)
Change the interval for each “tick” of this timer.

Parameters

• change – Float or int of the change you want to make to this timer’s tick rate. Note
this value is added to the current tick interval. To set an absolute value, use the
set_tick_interval() method. To shorten the tick rate, use a negative value.

• **kwargs – Not used in this method. Only exists since this method is often registered
as an event handler which may contain additional keyword arguments.

enable(**kwarg)→ None
Enable handler.

jump(timer_value, **kwargs)
Set the current amount of time of this timer.

This value is expressed in “ticks” since the interval per tick can be something other than 1 second).

Parameters

• timer_value – Integer of the current value you want this timer to be.

• **kwargs – Not used in this method. Only exists since this method is often registered
as an event handler which may contain additional keyword arguments.

pause(timer_value=0, **kwargs)
Pause the timer and posts the ‘timer_<name>_paused’ event.

Parameters

• timer_value – How many seconds you want to pause the timer for. Note that this pause
time is real-world seconds and does not take into consideration this timer’s tick interval.

• **kwargs – Not used in this method. Only exists since this method is often registered
as an event handler which may contain additional keyword arguments.

raise_config_error(msg, error_no, *, context=None)
Raise a ConfigFileError exception.

reset(**kwargs)
Reset this timer based to the starting value that’s already been configured.

Does not start or stop the timer.

Parameters **kwargs – Not used in this method. Only exists since this method is often
registered as an event handler which may contain additional keyword arguments.

restart(**kwargs)
Restart the timer by resetting it and then starting it.

Essentially this is just a reset() then a start().

Parameters **kwargs – Not used in this method. Only exists since this method is often
registered as an event handler which may contain additional keyword arguments.

set_tick_interval(timer_value, **kwargs)
Set the number of seconds between ticks for this timer.

This is an absolute setting. To apply a change to the current value, use the change_tick_interval() method.

Parameters

7.3. API Reference 95

MPF Documentation Developer Documentation, Release 0.50.22

• timer_value – The new number of seconds between each tick of this timer. This value
should always be positive.

• **kwargs – Not used in this method. Only exists since this method is often registered
as an event handler which may contain additional keyword arguments.

start(**kwargs)
Start this timer based on the starting value that’s already been configured.

Use jump() if you want to set the starting time value.

Parameters **kwargs – Not used in this method. Only exists since this method is often
registered as an event handler which may contain additional keyword arguments.

stop(**kwargs)
Stop the timer and posts the ‘timer_<name>_stopped’ event.

Parameters **kwargs – Not used in this method. Only exists since this method is often
registered as an event handler which may contain additional keyword arguments.

subtract(timer_value, **kwargs)
Subtract ticks from this timer.

Parameters

• timer_value – The number of ticks you want to subtract from this timer’s current
value.

• **kwargs – Not used in this method. Only exists since this method is often registered
as an event handler which may contain additional keyword arguments.

ticks
Return ticks.

timer_complete(**kwargs)
Automatically called when this timer completes.

Posts the ‘timer_<name>_complete’ event. Can be manually called to mark this timer as complete.

Parameters **kwargs – Not used in this method. Only exists since this method is often
registered as an event handler which may contain additional keyword arguments.

7.3.3 Modes

Covers all the “built-in” modes. They’re accessible via self.machine.modes.*name*, for example, self.
machine.modes.game or self.machine.modes.base.

self.machine.modes.attract

class mpf.modes.attract.code.attract.Attract(machine, config, name, path)
Bases: mpf.core.mode.Mode

Default mode running in a machine when a game is not in progress.

The attract mode’s main job is to watch for the start button to be pressed, to post the requests to start games, and
to move the machine flow to the next mode if the request to start game comes back as approved.

Accessing the attract mode via code

You can access the attract mode from anywhere via self.machine.modes.attract.

96 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

Methods & Attributes

The attract mode has the following methods & attributes available. Note that methods & attributes inherited
from the base Mode class are not included here.

active
Return True if this mode is active.

add_mode_event_handler(event: str, handler: Callable, priority: int = 0, **kwargs)
Register an event handler which is automatically removed when this mode stops.

This method is similar to the Event Manager’s add_handler() method, except this method automatically
unregisters the handlers when the mode ends.

Parameters

• event – String name of the event you’re adding a handler for. Since events are text
strings, they don’t have to be pre-defined.

• handler – The method that will be called when the event is fired.

• priority – An arbitrary integer value that defines what order the handlers will be called
in. The default is 1, so if you have a handler that you want to be called first, add it here
with a priority of 2. (Or 3 or 10 or 100000.) The numbers don’t matter. They’re called
from highest to lowest. (i.e. priority 100 is called before priority 1.)

• **kwargs – Any any additional keyword/argument pairs entered here will be attached
to the handler and called whenever that handler is called. Note these are in addition to
kwargs that could be passed as part of the event post. If there’s a conflict, the event-level
ones will win.

Returns A GUID reference to the handler which you can use to later remove the handler via
remove_handler_by_key. Though you don’t need to remove the handler since the
whole point of this method is they’re automatically removed when the mode stops.

Note that if you do add a handler via this method and then remove it manually, that’s ok too.

configure_logging(logger: str, console_level: str = ’basic’, file_level: str = ’basic’)
Configure logging.

Parameters

• logger – The string name of the logger to use.

• console_level – The level of logging for the console. Valid options are “none”,
“basic”, or “full”.

• file_level – The level of logging for the console. Valid options are “none”, “basic”,
or “full”.

create_mode_devices()→ None
Create new devices that are specified in a mode config that haven’t been created in the machine-wide.

debug_log(msg: str, *args, **kwargs)→ None
Log a message at the debug level.

Note that whether this message shows up in the console or log file is controlled by the settings used with
configure_logging().

error_log(msg: str, *args, context=None, **kwargs)→ None
Log a message at the error level.

These messages will always be shown in the console and the log file.

7.3. API Reference 97

MPF Documentation Developer Documentation, Release 0.50.22

ignorable_runtime_exception(msg: str)→ None
Handle ignorable runtime exception.

During development or tests raise an exception for easier debugging. Log an error during production.

info_log(msg: str, *args, context=None, **kwargs)→ None
Log a message at the info level.

Whether this message shows up in the console or log file is controlled by the settings used with config-
ure_logging().

initialise_mode()→ None
Initialise this mode.

is_game_mode
Return true if this is a game mode.

load_mode_devices()→ None
Load config of mode devices.

raise_config_error(msg, error_no, *, context=None)
Raise a ConfigFileError exception.

result_of_start_request(ev_result=True)
Handle the result of the start request.

Called after the request_to_start_game event is posted.

If result is True, this method posts the event game_start. If False, nothing happens, as the game start
request was denied by some handler.

Parameters ev_result – Bool result of the boolean event request_to_start_game. If any
registered event handler did not want the game to start, this will be False. Otherwise it’s
True.

start(mode_priority=None, callback=None, **kwargs)→ None
Start this mode.

Parameters

• mode_priority – Integer value of what you want this mode to run at. If you don’t
specify one, it will use the “Mode: priority” setting from this mode’s configuration file.

• **kwargs – Catch-all since this mode might start from events with who-knows-what
keyword arguments.

Warning: You can safely call this method, but do not override it in your mode code. If you want to write
your own mode code by subclassing Mode, put whatever code you want to run when this mode starts in
the mode_start method which will be called automatically.

start_button_pressed()
Handle start button press.

Called when the a switch tagged with start is activated.

Note that in MPF, the game start process is initiated when the start button is released, so when the button
is first pressed, MPF just records the time stamp. This allows the total time the start button was pressed
to be note, so that, for example, different types of games can be started based on long-presses of the start
button.

start_button_released()
Handle start button release.

Called when the a switch tagged with start is deactivated.

98 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

Since this is the Attract mode, this method posts a boolean event called request_to_start_game. If that
event comes back True, this method calls result_of_start_request().

stop(callback: Any = None, **kwargs)→ bool
Stop this mode.

Parameters

• callback – Method which will be called once this mode has stopped. Will only be
called when the mode is running (includes currently stopping)

• **kwargs – Catch-all since this mode might start from events with who-knows-what
keyword arguments.

Warning: You can safely call this method, but do not override it in your mode code. If you want to write
your own mode code by subclassing Mode, put whatever code you want to run when this mode stops in
the mode_stop method which will be called automatically.

Returns true if the mode is running. Otherwise false.

warning_log(msg: str, *args, context=None, **kwargs)→ None
Log a message at the warning level.

These messages will always be shown in the console and the log file.

self.machine.modes.bonus

class mpf.modes.bonus.code.bonus.Bonus(machine, config, name, path)
Bases: mpf.core.mode.Mode

Bonus mode for MPF.

Give a player bonus for their achievements, but only if the machine is not tilted.

Accessing the bonus mode via code

You can access the bonus mode from anywhere via self.machine.modes.bonus.

Methods & Attributes

The bonus mode has the following methods & attributes available. Note that methods & attributes inherited
from the base Mode class are not included here.

active
Return True if this mode is active.

add_mode_event_handler(event: str, handler: Callable, priority: int = 0, **kwargs)
Register an event handler which is automatically removed when this mode stops.

This method is similar to the Event Manager’s add_handler() method, except this method automatically
unregisters the handlers when the mode ends.

Parameters

• event – String name of the event you’re adding a handler for. Since events are text
strings, they don’t have to be pre-defined.

• handler – The method that will be called when the event is fired.

7.3. API Reference 99

MPF Documentation Developer Documentation, Release 0.50.22

• priority – An arbitrary integer value that defines what order the handlers will be called
in. The default is 1, so if you have a handler that you want to be called first, add it here
with a priority of 2. (Or 3 or 10 or 100000.) The numbers don’t matter. They’re called
from highest to lowest. (i.e. priority 100 is called before priority 1.)

• **kwargs – Any any additional keyword/argument pairs entered here will be attached
to the handler and called whenever that handler is called. Note these are in addition to
kwargs that could be passed as part of the event post. If there’s a conflict, the event-level
ones will win.

Returns A GUID reference to the handler which you can use to later remove the handler via
remove_handler_by_key. Though you don’t need to remove the handler since the
whole point of this method is they’re automatically removed when the mode stops.

Note that if you do add a handler via this method and then remove it manually, that’s ok too.

configure_logging(logger: str, console_level: str = ’basic’, file_level: str = ’basic’)
Configure logging.

Parameters

• logger – The string name of the logger to use.

• console_level – The level of logging for the console. Valid options are “none”,
“basic”, or “full”.

• file_level – The level of logging for the console. Valid options are “none”, “basic”,
or “full”.

create_mode_devices()→ None
Create new devices that are specified in a mode config that haven’t been created in the machine-wide.

debug_log(msg: str, *args, **kwargs)→ None
Log a message at the debug level.

Note that whether this message shows up in the console or log file is controlled by the settings used with
configure_logging().

error_log(msg: str, *args, context=None, **kwargs)→ None
Log a message at the error level.

These messages will always be shown in the console and the log file.

hurry_up(**kwargs)
Change the slide display delay to the “hurry up” setting.

This is typically used with a flipper cancel event to hurry up the bonus display when the player hits both
flippers.

ignorable_runtime_exception(msg: str)→ None
Handle ignorable runtime exception.

During development or tests raise an exception for easier debugging. Log an error during production.

info_log(msg: str, *args, context=None, **kwargs)→ None
Log a message at the info level.

Whether this message shows up in the console or log file is controlled by the settings used with config-
ure_logging().

initialise_mode()→ None
Initialise this mode.

100 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

is_game_mode
Return true if this is a game mode.

load_mode_devices()→ None
Load config of mode devices.

raise_config_error(msg, error_no, *, context=None)
Raise a ConfigFileError exception.

start(mode_priority=None, callback=None, **kwargs)→ None
Start this mode.

Parameters

• mode_priority – Integer value of what you want this mode to run at. If you don’t
specify one, it will use the “Mode: priority” setting from this mode’s configuration file.

• **kwargs – Catch-all since this mode might start from events with who-knows-what
keyword arguments.

Warning: You can safely call this method, but do not override it in your mode code. If you want to write
your own mode code by subclassing Mode, put whatever code you want to run when this mode starts in
the mode_start method which will be called automatically.

stop(callback: Any = None, **kwargs)→ bool
Stop this mode.

Parameters

• callback – Method which will be called once this mode has stopped. Will only be
called when the mode is running (includes currently stopping)

• **kwargs – Catch-all since this mode might start from events with who-knows-what
keyword arguments.

Warning: You can safely call this method, but do not override it in your mode code. If you want to write
your own mode code by subclassing Mode, put whatever code you want to run when this mode stops in
the mode_stop method which will be called automatically.

Returns true if the mode is running. Otherwise false.

warning_log(msg: str, *args, context=None, **kwargs)→ None
Log a message at the warning level.

These messages will always be shown in the console and the log file.

self.machine.modes.carousel

class mpf.modes.carousel.code.carousel.Carousel(machine, config, name, path)
Bases: mpf.core.mode.Mode

Mode which allows the player to select another mode to run.

Accessing the carousel mode via code

You can access the carousel mode from anywhere via self.machine.modes.carousel.

7.3. API Reference 101

MPF Documentation Developer Documentation, Release 0.50.22

Methods & Attributes

The carousel mode has the following methods & attributes available. Note that methods & attributes inherited
from the base Mode class are not included here.

active
Return True if this mode is active.

add_mode_event_handler(event: str, handler: Callable, priority: int = 0, **kwargs)
Register an event handler which is automatically removed when this mode stops.

This method is similar to the Event Manager’s add_handler() method, except this method automatically
unregisters the handlers when the mode ends.

Parameters

• event – String name of the event you’re adding a handler for. Since events are text
strings, they don’t have to be pre-defined.

• handler – The method that will be called when the event is fired.

• priority – An arbitrary integer value that defines what order the handlers will be called
in. The default is 1, so if you have a handler that you want to be called first, add it here
with a priority of 2. (Or 3 or 10 or 100000.) The numbers don’t matter. They’re called
from highest to lowest. (i.e. priority 100 is called before priority 1.)

• **kwargs – Any any additional keyword/argument pairs entered here will be attached
to the handler and called whenever that handler is called. Note these are in addition to
kwargs that could be passed as part of the event post. If there’s a conflict, the event-level
ones will win.

Returns A GUID reference to the handler which you can use to later remove the handler via
remove_handler_by_key. Though you don’t need to remove the handler since the
whole point of this method is they’re automatically removed when the mode stops.

Note that if you do add a handler via this method and then remove it manually, that’s ok too.

configure_logging(logger: str, console_level: str = ’basic’, file_level: str = ’basic’)
Configure logging.

Parameters

• logger – The string name of the logger to use.

• console_level – The level of logging for the console. Valid options are “none”,
“basic”, or “full”.

• file_level – The level of logging for the console. Valid options are “none”, “basic”,
or “full”.

create_mode_devices()→ None
Create new devices that are specified in a mode config that haven’t been created in the machine-wide.

debug_log(msg: str, *args, **kwargs)→ None
Log a message at the debug level.

Note that whether this message shows up in the console or log file is controlled by the settings used with
configure_logging().

error_log(msg: str, *args, context=None, **kwargs)→ None
Log a message at the error level.

These messages will always be shown in the console and the log file.

102 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

ignorable_runtime_exception(msg: str)→ None
Handle ignorable runtime exception.

During development or tests raise an exception for easier debugging. Log an error during production.

info_log(msg: str, *args, context=None, **kwargs)→ None
Log a message at the info level.

Whether this message shows up in the console or log file is controlled by the settings used with config-
ure_logging().

initialise_mode()→ None
Initialise this mode.

is_game_mode
Return true if this is a game mode.

load_mode_devices()→ None
Load config of mode devices.

raise_config_error(msg, error_no, *, context=None)
Raise a ConfigFileError exception.

start(mode_priority=None, callback=None, **kwargs)→ None
Start this mode.

Parameters

• mode_priority – Integer value of what you want this mode to run at. If you don’t
specify one, it will use the “Mode: priority” setting from this mode’s configuration file.

• **kwargs – Catch-all since this mode might start from events with who-knows-what
keyword arguments.

Warning: You can safely call this method, but do not override it in your mode code. If you want to write
your own mode code by subclassing Mode, put whatever code you want to run when this mode starts in
the mode_start method which will be called automatically.

stop(callback: Any = None, **kwargs)→ bool
Stop this mode.

Parameters

• callback – Method which will be called once this mode has stopped. Will only be
called when the mode is running (includes currently stopping)

• **kwargs – Catch-all since this mode might start from events with who-knows-what
keyword arguments.

Warning: You can safely call this method, but do not override it in your mode code. If you want to write
your own mode code by subclassing Mode, put whatever code you want to run when this mode stops in
the mode_stop method which will be called automatically.

Returns true if the mode is running. Otherwise false.

warning_log(msg: str, *args, context=None, **kwargs)→ None
Log a message at the warning level.

These messages will always be shown in the console and the log file.

7.3. API Reference 103

MPF Documentation Developer Documentation, Release 0.50.22

self.machine.modes.credits

class mpf.modes.credits.code.credits.Credits(machine, config, name, path)
Bases: mpf.core.mode.Mode

Mode which manages the credits and prevents the game from starting without credits.

Accessing the credits mode via code

You can access the credits mode from anywhere via self.machine.modes.credits.

Methods & Attributes

The credits mode has the following methods & attributes available. Note that methods & attributes inherited
from the base Mode class are not included here.

active
Return True if this mode is active.

add_credit(price_tiering=True)
Add a single credit to the machine.

Parameters price_tiering – Boolean which controls whether this credit will be eligible
for the pricing tier bonuses. Default is True.

add_mode_event_handler(event: str, handler: Callable, priority: int = 0, **kwargs)
Register an event handler which is automatically removed when this mode stops.

This method is similar to the Event Manager’s add_handler() method, except this method automatically
unregisters the handlers when the mode ends.

Parameters

• event – String name of the event you’re adding a handler for. Since events are text
strings, they don’t have to be pre-defined.

• handler – The method that will be called when the event is fired.

• priority – An arbitrary integer value that defines what order the handlers will be called
in. The default is 1, so if you have a handler that you want to be called first, add it here
with a priority of 2. (Or 3 or 10 or 100000.) The numbers don’t matter. They’re called
from highest to lowest. (i.e. priority 100 is called before priority 1.)

• **kwargs – Any any additional keyword/argument pairs entered here will be attached
to the handler and called whenever that handler is called. Note these are in addition to
kwargs that could be passed as part of the event post. If there’s a conflict, the event-level
ones will win.

Returns A GUID reference to the handler which you can use to later remove the handler via
remove_handler_by_key. Though you don’t need to remove the handler since the
whole point of this method is they’re automatically removed when the mode stops.

Note that if you do add a handler via this method and then remove it manually, that’s ok too.

clear_all_credits(**kwargs)
Clear all credits.

configure_logging(logger: str, console_level: str = ’basic’, file_level: str = ’basic’)
Configure logging.

104 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

Parameters

• logger – The string name of the logger to use.

• console_level – The level of logging for the console. Valid options are “none”,
“basic”, or “full”.

• file_level – The level of logging for the console. Valid options are “none”, “basic”,
or “full”.

create_mode_devices()→ None
Create new devices that are specified in a mode config that haven’t been created in the machine-wide.

debug_log(msg: str, *args, **kwargs)→ None
Log a message at the debug level.

Note that whether this message shows up in the console or log file is controlled by the settings used with
configure_logging().

enable_credit_play(post_event=True, **kwargs)
Enable credits play.

enable_free_play(post_event=True, **kwargs)
Enable free play.

error_log(msg: str, *args, context=None, **kwargs)→ None
Log a message at the error level.

These messages will always be shown in the console and the log file.

ignorable_runtime_exception(msg: str)→ None
Handle ignorable runtime exception.

During development or tests raise an exception for easier debugging. Log an error during production.

info_log(msg: str, *args, context=None, **kwargs)→ None
Log a message at the info level.

Whether this message shows up in the console or log file is controlled by the settings used with config-
ure_logging().

initialise_mode()→ None
Initialise this mode.

is_game_mode
Return true if this is a game mode.

load_mode_devices()→ None
Load config of mode devices.

raise_config_error(msg, error_no, *, context=None)
Raise a ConfigFileError exception.

start(mode_priority=None, callback=None, **kwargs)→ None
Start this mode.

Parameters

• mode_priority – Integer value of what you want this mode to run at. If you don’t
specify one, it will use the “Mode: priority” setting from this mode’s configuration file.

• **kwargs – Catch-all since this mode might start from events with who-knows-what
keyword arguments.

7.3. API Reference 105

MPF Documentation Developer Documentation, Release 0.50.22

Warning: You can safely call this method, but do not override it in your mode code. If you want to write
your own mode code by subclassing Mode, put whatever code you want to run when this mode starts in
the mode_start method which will be called automatically.

stop(callback: Any = None, **kwargs)→ bool
Stop this mode.

Parameters

• callback – Method which will be called once this mode has stopped. Will only be
called when the mode is running (includes currently stopping)

• **kwargs – Catch-all since this mode might start from events with who-knows-what
keyword arguments.

Warning: You can safely call this method, but do not override it in your mode code. If you want to write
your own mode code by subclassing Mode, put whatever code you want to run when this mode stops in
the mode_stop method which will be called automatically.

Returns true if the mode is running. Otherwise false.

toggle_credit_play(**kwargs)
Toggle between free and credits play.

warning_log(msg: str, *args, context=None, **kwargs)→ None
Log a message at the warning level.

These messages will always be shown in the console and the log file.

self.machine.modes.game

class mpf.modes.game.code.game.Game(machine, config, name, path)
Bases: mpf.core.async_mode.AsyncMode

Base mode that runs an active game on a pinball machine.

The game mode is responsible for creating players, starting and ending balls, rotating to the next player, etc.

Accessing the game mode via code

You can access the game mode from anywhere via self.machine.modes.game.

Methods & Attributes

The game mode has the following methods & attributes available. Note that methods & attributes inherited from
the base Mode class are not included here.

active
Return True if this mode is active.

add_mode_event_handler(event: str, handler: Callable, priority: int = 0, **kwargs)
Register an event handler which is automatically removed when this mode stops.

This method is similar to the Event Manager’s add_handler() method, except this method automatically
unregisters the handlers when the mode ends.

Parameters

• event – String name of the event you’re adding a handler for. Since events are text
strings, they don’t have to be pre-defined.

106 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

• handler – The method that will be called when the event is fired.

• priority – An arbitrary integer value that defines what order the handlers will be called
in. The default is 1, so if you have a handler that you want to be called first, add it here
with a priority of 2. (Or 3 or 10 or 100000.) The numbers don’t matter. They’re called
from highest to lowest. (i.e. priority 100 is called before priority 1.)

• **kwargs – Any any additional keyword/argument pairs entered here will be attached
to the handler and called whenever that handler is called. Note these are in addition to
kwargs that could be passed as part of the event post. If there’s a conflict, the event-level
ones will win.

Returns A GUID reference to the handler which you can use to later remove the handler via
remove_handler_by_key. Though you don’t need to remove the handler since the
whole point of this method is they’re automatically removed when the mode stops.

Note that if you do add a handler via this method and then remove it manually, that’s ok too.

ball_drained(balls=0, **kwargs)
One or more balls has drained.

Drained balls will be subtracted from the number of balls in play.

Parameters balls – The number of balls that just drained.

Returns {balls: number of balls drained}

Return type A dictionary

ball_ending()
Handle ball ending.

DEPRECATED in v0.50. Use end_ball() instead.

balls_in_play
Property which holds the current number of balls in play.

Note that the number of balls in play is not necessarily the same as the number of balls that are active on
the playfield. (For example, a ball could be held in a device while a show is playing, etc.)

You can set this property to change it, or get it’s value.

If you set this value to 0, the ball ending process will be started.

configure_logging(logger: str, console_level: str = ’basic’, file_level: str = ’basic’)
Configure logging.

Parameters

• logger – The string name of the logger to use.

• console_level – The level of logging for the console. Valid options are “none”,
“basic”, or “full”.

• file_level – The level of logging for the console. Valid options are “none”, “basic”,
or “full”.

create_mode_devices()→ None
Create new devices that are specified in a mode config that haven’t been created in the machine-wide.

debug_log(msg: str, *args, **kwargs)→ None
Log a message at the debug level.

Note that whether this message shows up in the console or log file is controlled by the settings used with
configure_logging().

7.3. API Reference 107

MPF Documentation Developer Documentation, Release 0.50.22

end_ball()
Set an event flag that will end the current ball.

end_game()
End the current game.

This triggers the game end manually.

error_log(msg: str, *args, context=None, **kwargs)→ None
Log a message at the error level.

These messages will always be shown in the console and the log file.

game_ending()
Handle game ending.

DEPRECATED in v0.50. Use end_game() instead.

ignorable_runtime_exception(msg: str)→ None
Handle ignorable runtime exception.

During development or tests raise an exception for easier debugging. Log an error during production.

info_log(msg: str, *args, context=None, **kwargs)→ None
Log a message at the info level.

Whether this message shows up in the console or log file is controlled by the settings used with config-
ure_logging().

initialise_mode()→ None
Initialise this mode.

is_game_mode
Return false.

We are the game and not a mode within the game.

load_mode_devices()→ None
Load config of mode devices.

raise_config_error(msg, error_no, *, context=None)
Raise a ConfigFileError exception.

request_player_add(**kwargs)
Request to add a player to an active game.

This method contains the logic to verify whether it’s ok to add a player. For example, the game must be
on Ball 1 and the current number of players must be less than the max number allowed.

Assuming this method believes it’s ok to add a player, it posts the boolean event player_add_request to
give other modules the opportunity to deny it. For example, a credits module might deny the request if
there are not enough credits in the machine.

If player_add_request comes back True, the event player_added is posted with a reference to the new
player object as a player kwarg.

start(mode_priority=None, callback=None, **kwargs)→ None
Start this mode.

Parameters

• mode_priority – Integer value of what you want this mode to run at. If you don’t
specify one, it will use the “Mode: priority” setting from this mode’s configuration file.

108 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

• **kwargs – Catch-all since this mode might start from events with who-knows-what
keyword arguments.

Warning: You can safely call this method, but do not override it in your mode code. If you want to write
your own mode code by subclassing Mode, put whatever code you want to run when this mode starts in
the mode_start method which will be called automatically.

stop(callback: Any = None, **kwargs)→ bool
Stop this mode.

Parameters

• callback – Method which will be called once this mode has stopped. Will only be
called when the mode is running (includes currently stopping)

• **kwargs – Catch-all since this mode might start from events with who-knows-what
keyword arguments.

Warning: You can safely call this method, but do not override it in your mode code. If you want to write
your own mode code by subclassing Mode, put whatever code you want to run when this mode stops in
the mode_stop method which will be called automatically.

Returns true if the mode is running. Otherwise false.

warning_log(msg: str, *args, context=None, **kwargs)→ None
Log a message at the warning level.

These messages will always be shown in the console and the log file.

self.machine.modes.high_score

class mpf.modes.high_score.code.high_score.HighScore(machine, config, name, path)
Bases: mpf.core.async_mode.AsyncMode

High score mode.

Mode which runs during the game ending process to check for high scores and lets the players enter their names
or initials.

Accessing the high_score mode via code

You can access the high_score mode from anywhere via self.machine.modes.high_score.

Methods & Attributes

The high_score mode has the following methods & attributes available. Note that methods & attributes inherited
from the base Mode class are not included here.

active
Return True if this mode is active.

add_mode_event_handler(event: str, handler: Callable, priority: int = 0, **kwargs)
Register an event handler which is automatically removed when this mode stops.

This method is similar to the Event Manager’s add_handler() method, except this method automatically
unregisters the handlers when the mode ends.

Parameters

7.3. API Reference 109

MPF Documentation Developer Documentation, Release 0.50.22

• event – String name of the event you’re adding a handler for. Since events are text
strings, they don’t have to be pre-defined.

• handler – The method that will be called when the event is fired.

• priority – An arbitrary integer value that defines what order the handlers will be called
in. The default is 1, so if you have a handler that you want to be called first, add it here
with a priority of 2. (Or 3 or 10 or 100000.) The numbers don’t matter. They’re called
from highest to lowest. (i.e. priority 100 is called before priority 1.)

• **kwargs – Any any additional keyword/argument pairs entered here will be attached
to the handler and called whenever that handler is called. Note these are in addition to
kwargs that could be passed as part of the event post. If there’s a conflict, the event-level
ones will win.

Returns A GUID reference to the handler which you can use to later remove the handler via
remove_handler_by_key. Though you don’t need to remove the handler since the
whole point of this method is they’re automatically removed when the mode stops.

Note that if you do add a handler via this method and then remove it manually, that’s ok too.

configure_logging(logger: str, console_level: str = ’basic’, file_level: str = ’basic’)
Configure logging.

Parameters

• logger – The string name of the logger to use.

• console_level – The level of logging for the console. Valid options are “none”,
“basic”, or “full”.

• file_level – The level of logging for the console. Valid options are “none”, “basic”,
or “full”.

create_mode_devices()→ None
Create new devices that are specified in a mode config that haven’t been created in the machine-wide.

debug_log(msg: str, *args, **kwargs)→ None
Log a message at the debug level.

Note that whether this message shows up in the console or log file is controlled by the settings used with
configure_logging().

error_log(msg: str, *args, context=None, **kwargs)→ None
Log a message at the error level.

These messages will always be shown in the console and the log file.

ignorable_runtime_exception(msg: str)→ None
Handle ignorable runtime exception.

During development or tests raise an exception for easier debugging. Log an error during production.

info_log(msg: str, *args, context=None, **kwargs)→ None
Log a message at the info level.

Whether this message shows up in the console or log file is controlled by the settings used with config-
ure_logging().

initialise_mode()→ None
Initialise this mode.

is_game_mode
Return true if this is a game mode.

110 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

load_mode_devices()→ None
Load config of mode devices.

raise_config_error(msg, error_no, *, context=None)
Raise a ConfigFileError exception.

start(mode_priority=None, callback=None, **kwargs)→ None
Start this mode.

Parameters

• mode_priority – Integer value of what you want this mode to run at. If you don’t
specify one, it will use the “Mode: priority” setting from this mode’s configuration file.

• **kwargs – Catch-all since this mode might start from events with who-knows-what
keyword arguments.

Warning: You can safely call this method, but do not override it in your mode code. If you want to write
your own mode code by subclassing Mode, put whatever code you want to run when this mode starts in
the mode_start method which will be called automatically.

stop(callback: Any = None, **kwargs)→ bool
Stop this mode.

Parameters

• callback – Method which will be called once this mode has stopped. Will only be
called when the mode is running (includes currently stopping)

• **kwargs – Catch-all since this mode might start from events with who-knows-what
keyword arguments.

Warning: You can safely call this method, but do not override it in your mode code. If you want to write
your own mode code by subclassing Mode, put whatever code you want to run when this mode stops in
the mode_stop method which will be called automatically.

Returns true if the mode is running. Otherwise false.

warning_log(msg: str, *args, context=None, **kwargs)→ None
Log a message at the warning level.

These messages will always be shown in the console and the log file.

self.machine.modes.match

class mpf.modes.match.code.match.Match(machine, config, name, path)
Bases: mpf.core.async_mode.AsyncMode

Match mode.

Accessing the match mode via code

You can access the match mode from anywhere via self.machine.modes.match.

Methods & Attributes

The match mode has the following methods & attributes available. Note that methods & attributes inherited
from the base Mode class are not included here.

7.3. API Reference 111

MPF Documentation Developer Documentation, Release 0.50.22

active
Return True if this mode is active.

add_mode_event_handler(event: str, handler: Callable, priority: int = 0, **kwargs)
Register an event handler which is automatically removed when this mode stops.

This method is similar to the Event Manager’s add_handler() method, except this method automatically
unregisters the handlers when the mode ends.

Parameters

• event – String name of the event you’re adding a handler for. Since events are text
strings, they don’t have to be pre-defined.

• handler – The method that will be called when the event is fired.

• priority – An arbitrary integer value that defines what order the handlers will be called
in. The default is 1, so if you have a handler that you want to be called first, add it here
with a priority of 2. (Or 3 or 10 or 100000.) The numbers don’t matter. They’re called
from highest to lowest. (i.e. priority 100 is called before priority 1.)

• **kwargs – Any any additional keyword/argument pairs entered here will be attached
to the handler and called whenever that handler is called. Note these are in addition to
kwargs that could be passed as part of the event post. If there’s a conflict, the event-level
ones will win.

Returns A GUID reference to the handler which you can use to later remove the handler via
remove_handler_by_key. Though you don’t need to remove the handler since the
whole point of this method is they’re automatically removed when the mode stops.

Note that if you do add a handler via this method and then remove it manually, that’s ok too.

configure_logging(logger: str, console_level: str = ’basic’, file_level: str = ’basic’)
Configure logging.

Parameters

• logger – The string name of the logger to use.

• console_level – The level of logging for the console. Valid options are “none”,
“basic”, or “full”.

• file_level – The level of logging for the console. Valid options are “none”, “basic”,
or “full”.

create_mode_devices()→ None
Create new devices that are specified in a mode config that haven’t been created in the machine-wide.

debug_log(msg: str, *args, **kwargs)→ None
Log a message at the debug level.

Note that whether this message shows up in the console or log file is controlled by the settings used with
configure_logging().

error_log(msg: str, *args, context=None, **kwargs)→ None
Log a message at the error level.

These messages will always be shown in the console and the log file.

ignorable_runtime_exception(msg: str)→ None
Handle ignorable runtime exception.

During development or tests raise an exception for easier debugging. Log an error during production.

112 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

info_log(msg: str, *args, context=None, **kwargs)→ None
Log a message at the info level.

Whether this message shows up in the console or log file is controlled by the settings used with config-
ure_logging().

initialise_mode()→ None
Initialise this mode.

is_game_mode
Return true if this is a game mode.

load_mode_devices()→ None
Load config of mode devices.

raise_config_error(msg, error_no, *, context=None)
Raise a ConfigFileError exception.

start(mode_priority=None, callback=None, **kwargs)→ None
Start this mode.

Parameters

• mode_priority – Integer value of what you want this mode to run at. If you don’t
specify one, it will use the “Mode: priority” setting from this mode’s configuration file.

• **kwargs – Catch-all since this mode might start from events with who-knows-what
keyword arguments.

Warning: You can safely call this method, but do not override it in your mode code. If you want to write
your own mode code by subclassing Mode, put whatever code you want to run when this mode starts in
the mode_start method which will be called automatically.

stop(callback: Any = None, **kwargs)→ bool
Stop this mode.

Parameters

• callback – Method which will be called once this mode has stopped. Will only be
called when the mode is running (includes currently stopping)

• **kwargs – Catch-all since this mode might start from events with who-knows-what
keyword arguments.

Warning: You can safely call this method, but do not override it in your mode code. If you want to write
your own mode code by subclassing Mode, put whatever code you want to run when this mode stops in
the mode_stop method which will be called automatically.

Returns true if the mode is running. Otherwise false.

warning_log(msg: str, *args, context=None, **kwargs)→ None
Log a message at the warning level.

These messages will always be shown in the console and the log file.

self.machine.modes.service

class mpf.modes.service.code.service.Service(machine: MachineController, config: dict,
name: str, path: str)

Bases: mpf.core.async_mode.AsyncMode

The service mode.

7.3. API Reference 113

MPF Documentation Developer Documentation, Release 0.50.22

Accessing the service mode via code

You can access the service mode from anywhere via self.machine.modes.service.

Methods & Attributes

The service mode has the following methods & attributes available. Note that methods & attributes inherited
from the base Mode class are not included here.

active
Return True if this mode is active.

add_mode_event_handler(event: str, handler: Callable, priority: int = 0, **kwargs)
Register an event handler which is automatically removed when this mode stops.

This method is similar to the Event Manager’s add_handler() method, except this method automatically
unregisters the handlers when the mode ends.

Parameters

• event – String name of the event you’re adding a handler for. Since events are text
strings, they don’t have to be pre-defined.

• handler – The method that will be called when the event is fired.

• priority – An arbitrary integer value that defines what order the handlers will be called
in. The default is 1, so if you have a handler that you want to be called first, add it here
with a priority of 2. (Or 3 or 10 or 100000.) The numbers don’t matter. They’re called
from highest to lowest. (i.e. priority 100 is called before priority 1.)

• **kwargs – Any any additional keyword/argument pairs entered here will be attached
to the handler and called whenever that handler is called. Note these are in addition to
kwargs that could be passed as part of the event post. If there’s a conflict, the event-level
ones will win.

Returns A GUID reference to the handler which you can use to later remove the handler via
remove_handler_by_key. Though you don’t need to remove the handler since the
whole point of this method is they’re automatically removed when the mode stops.

Note that if you do add a handler via this method and then remove it manually, that’s ok too.

configure_logging(logger: str, console_level: str = ’basic’, file_level: str = ’basic’)
Configure logging.

Parameters

• logger – The string name of the logger to use.

• console_level – The level of logging for the console. Valid options are “none”,
“basic”, or “full”.

• file_level – The level of logging for the console. Valid options are “none”, “basic”,
or “full”.

create_mode_devices()→ None
Create new devices that are specified in a mode config that haven’t been created in the machine-wide.

debug_log(msg: str, *args, **kwargs)→ None
Log a message at the debug level.

Note that whether this message shows up in the console or log file is controlled by the settings used with
configure_logging().

114 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

error_log(msg: str, *args, context=None, **kwargs)→ None
Log a message at the error level.

These messages will always be shown in the console and the log file.

ignorable_runtime_exception(msg: str)→ None
Handle ignorable runtime exception.

During development or tests raise an exception for easier debugging. Log an error during production.

info_log(msg: str, *args, context=None, **kwargs)→ None
Log a message at the info level.

Whether this message shows up in the console or log file is controlled by the settings used with config-
ure_logging().

initialise_mode()→ None
Initialise this mode.

is_game_mode
Return true if this is a game mode.

load_mode_devices()→ None
Load config of mode devices.

raise_config_error(msg, error_no, *, context=None)
Raise a ConfigFileError exception.

start(mode_priority=None, callback=None, **kwargs)→ None
Start this mode.

Parameters

• mode_priority – Integer value of what you want this mode to run at. If you don’t
specify one, it will use the “Mode: priority” setting from this mode’s configuration file.

• **kwargs – Catch-all since this mode might start from events with who-knows-what
keyword arguments.

Warning: You can safely call this method, but do not override it in your mode code. If you want to write
your own mode code by subclassing Mode, put whatever code you want to run when this mode starts in
the mode_start method which will be called automatically.

stop(callback: Any = None, **kwargs)→ bool
Stop this mode.

Parameters

• callback – Method which will be called once this mode has stopped. Will only be
called when the mode is running (includes currently stopping)

• **kwargs – Catch-all since this mode might start from events with who-knows-what
keyword arguments.

Warning: You can safely call this method, but do not override it in your mode code. If you want to write
your own mode code by subclassing Mode, put whatever code you want to run when this mode stops in
the mode_stop method which will be called automatically.

Returns true if the mode is running. Otherwise false.

warning_log(msg: str, *args, context=None, **kwargs)→ None
Log a message at the warning level.

These messages will always be shown in the console and the log file.

7.3. API Reference 115

MPF Documentation Developer Documentation, Release 0.50.22

self.machine.modes.tilt

class mpf.modes.tilt.code.tilt.Tilt(machine: mpf.core.machine.MachineController, config:
dict, name: str, path)

Bases: mpf.core.mode.Mode

A mode which handles a tilt in a pinball machine.

Note that this mode is always running (even during attract mode) since the machine needs to watch for slam tilts
at all times.

Accessing the tilt mode via code

You can access the tilt mode from anywhere via self.machine.modes.tilt.

Methods & Attributes

The tilt mode has the following methods & attributes available. Note that methods & attributes inherited from
the base Mode class are not included here.

active
Return True if this mode is active.

add_mode_event_handler(event: str, handler: Callable, priority: int = 0, **kwargs)
Register an event handler which is automatically removed when this mode stops.

This method is similar to the Event Manager’s add_handler() method, except this method automatically
unregisters the handlers when the mode ends.

Parameters

• event – String name of the event you’re adding a handler for. Since events are text
strings, they don’t have to be pre-defined.

• handler – The method that will be called when the event is fired.

• priority – An arbitrary integer value that defines what order the handlers will be called
in. The default is 1, so if you have a handler that you want to be called first, add it here
with a priority of 2. (Or 3 or 10 or 100000.) The numbers don’t matter. They’re called
from highest to lowest. (i.e. priority 100 is called before priority 1.)

• **kwargs – Any any additional keyword/argument pairs entered here will be attached
to the handler and called whenever that handler is called. Note these are in addition to
kwargs that could be passed as part of the event post. If there’s a conflict, the event-level
ones will win.

Returns A GUID reference to the handler which you can use to later remove the handler via
remove_handler_by_key. Though you don’t need to remove the handler since the
whole point of this method is they’re automatically removed when the mode stops.

Note that if you do add a handler via this method and then remove it manually, that’s ok too.

configure_logging(logger: str, console_level: str = ’basic’, file_level: str = ’basic’)
Configure logging.

Parameters

• logger – The string name of the logger to use.

• console_level – The level of logging for the console. Valid options are “none”,
“basic”, or “full”.

116 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

• file_level – The level of logging for the console. Valid options are “none”, “basic”,
or “full”.

create_mode_devices()→ None
Create new devices that are specified in a mode config that haven’t been created in the machine-wide.

debug_log(msg: str, *args, **kwargs)→ None
Log a message at the debug level.

Note that whether this message shows up in the console or log file is controlled by the settings used with
configure_logging().

error_log(msg: str, *args, context=None, **kwargs)→ None
Log a message at the error level.

These messages will always be shown in the console and the log file.

ignorable_runtime_exception(msg: str)→ None
Handle ignorable runtime exception.

During development or tests raise an exception for easier debugging. Log an error during production.

info_log(msg: str, *args, context=None, **kwargs)→ None
Log a message at the info level.

Whether this message shows up in the console or log file is controlled by the settings used with config-
ure_logging().

initialise_mode()→ None
Initialise this mode.

is_game_mode
Return true if this is a game mode.

load_mode_devices()→ None
Load config of mode devices.

raise_config_error(msg, error_no, *, context=None)
Raise a ConfigFileError exception.

reset_warnings(**kwargs)
Reset the tilt warnings for the current player.

slam_tilt(**kwargs)
Process a slam tilt.

This method posts the slam_tilt event and (if a game is active) sets the game mode’s slam_tilted
attribute to True.

start(mode_priority=None, callback=None, **kwargs)→ None
Start this mode.

Parameters

• mode_priority – Integer value of what you want this mode to run at. If you don’t
specify one, it will use the “Mode: priority” setting from this mode’s configuration file.

• **kwargs – Catch-all since this mode might start from events with who-knows-what
keyword arguments.

Warning: You can safely call this method, but do not override it in your mode code. If you want to write
your own mode code by subclassing Mode, put whatever code you want to run when this mode starts in
the mode_start method which will be called automatically.

7.3. API Reference 117

MPF Documentation Developer Documentation, Release 0.50.22

stop(callback: Any = None, **kwargs)→ bool
Stop this mode.

Parameters

• callback – Method which will be called once this mode has stopped. Will only be
called when the mode is running (includes currently stopping)

• **kwargs – Catch-all since this mode might start from events with who-knows-what
keyword arguments.

Warning: You can safely call this method, but do not override it in your mode code. If you want to write
your own mode code by subclassing Mode, put whatever code you want to run when this mode stops in
the mode_stop method which will be called automatically.

Returns true if the mode is running. Otherwise false.

tilt(**kwargs)
Cause the ball to tilt.

This will post an event called tilt, set the game mode’s tilted attribute to True, disable the flippers and
autofire devices, end the current ball, and wait for all the balls to drain.

tilt_settle_ms_remaining()
Return the amount of milliseconds remaining until the tilt settle time has cleared.

Returns Integer of the number of ms remaining until tilt settled is cleared.

tilt_warning(**kwargs)
Process a tilt warning.

If the number of warnings is the number to cause a tilt, a tilt will be processed.

warning_log(msg: str, *args, context=None, **kwargs)→ None
Log a message at the warning level.

These messages will always be shown in the console and the log file.

7.3.4 Hardware Platforms

Hardware platforms are stored in a machine hardware_platforms dictionary, for example, self.machine.
hardware_platforms['fast'] or self.machine.hardware_platforms['p_roc'].

self.machine.hardware_platforms[‘fadecandy’]

class mpf.platforms.fadecandy.FadecandyHardwarePlatform(machine: MachineCon-
troller)

Bases: mpf.platforms.openpixel.OpenpixelHardwarePlatform

Base class for the FadeCandy hardware platform.

Accessing the fadecandy platform via code

Hardware platforms are stored in the self.machine.hardware_platforms dictionary, so the fadecandy
platform is available via self.machine.hardware_platforms['fadecandy'].

118 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

Methods & Attributes

The fadecandy platform has the following methods & attributes available. Note that methods & attributes
inherited from base classes are not included here.

self.machine.hardware_platforms[‘fast’]

class mpf.platforms.fast.fast.FastHardwarePlatform(machine)
Bases: mpf.core.platform.ServoPlatform, mpf.core.platform.LightsPlatform,
mpf.core.platform.DmdPlatform, mpf.core.platform.SwitchPlatform, mpf.core.
platform.DriverPlatform

Platform class for the FAST hardware controller.

Accessing the fast platform via code

Hardware platforms are stored in the self.machine.hardware_platforms dictionary, so the fast plat-
form is available via self.machine.hardware_platforms['fast'].

Methods & Attributes

The fast platform has the following methods & attributes available. Note that methods & attributes inherited
from base classes are not included here.

clear_hw_rule(switch, coil)
Clear a hardware rule.

This is used if you want to remove the linkage between a switch and some driver activity. For example, if
you wanted to disable your flippers (so that a player pushing the flipper buttons wouldn’t cause the flippers
to flip), you’d call this method with your flipper button as the sw_num.

Parameters

• switch – The switch whose rule you want to clear.

• coil – The coil whose rule you want to clear.

configure_dmd()
Configure a hardware DMD connected to a FAST controller.

configure_driver(config: mpf.core.platform.DriverConfig, number: str, platform_settings: dict)
→ mpf.platforms.fast.fast_driver.FASTDriver

Configure a driver.

Parameters config – Driver config.

Returns: Driver object

configure_light(number, subtype, platform_settings)→ mpf.platforms.interfaces.light_platform_interface.LightPlatformInterface
Configure light in platform.

configure_servo(number: str)
Configure a servo.

Parameters number – Number of servo

Returns: Servo object.

7.3. API Reference 119

MPF Documentation Developer Documentation, Release 0.50.22

configure_switch(number: str, config: mpf.core.platform.SwitchConfig, platform_config: dict)→
mpf.platforms.fast.fast_switch.FASTSwitch

Configure the switch object for a FAST Pinball controller.

FAST Controllers support two types of switches: local and network. Local switches are switches that are
connected to the FAST controller board itself, and network switches are those connected to a FAST I/O
board.

MPF needs to know which type of switch is this is. You can specify the switch’s connection type in the
config file via the connection: setting (either local or network).

If a connection type is not specified, this method will use some intelligence to try to figure out which
default should be used.

If the DriverBoard type is fast, then it assumes the default is network. If it’s anything else (wpc,
system11, bally, etc.) then it assumes the connection type is local. Connection types can be mixed
and matched in the same machine.

Parameters config – Switch config.

Returns: Switch object.

static convert_number_from_config(number)
Convert a number from config format to hex.

classmethod get_coil_config_section()
Return coil config section.

get_hw_switch_states()
Return hardware states.

get_info_string()
Dump infos about boards.

classmethod get_switch_config_section()
Return switch config section.

initialize()
Initialise platform.

parse_light_number_to_channels(number: str, subtype: str)
Parse light channels from number string.

process_received_message(msg: str)
Send an incoming message from the FAST controller to the proper method for servicing.

Parameters msg – messaged which was received

receive_local_closed(msg)
Process local switch closed.

Parameters msg – switch number

receive_local_open(msg)
Process local switch open.

Parameters msg – switch number

receive_nw_closed(msg)
Process network switch closed.

Parameters msg – switch number

receive_nw_open(msg)
Process network switch open.

120 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

Parameters msg – switch number

receive_sa(msg)
Receive all switch states.

Parameters msg – switch states as bytearray

register_io_board(board)
Register an IO board.

Parameters board – ‘mpf.platform.fast.fast_io_board.FastIoBoard’ to register

register_processor_connection(name: str, communicator)
Register processor.

Once a communication link has been established with one of the processors on the FAST board, this
method lets the communicator let MPF know which processor it’s talking to.

This is a separate method since we don’t know which processor is on which serial port ahead of time.

Parameters

• communicator – communicator object

• name – name of processor

set_pulse_on_hit_and_enable_and_release_and_disable_rule(enable_switch, dis-
able_switch, coil)

Set pulse on hit and enable and release and disable rule on driver.

set_pulse_on_hit_and_enable_and_release_rule(enable_switch:
mpf.core.platform.SwitchSettings,
coil: mpf.core.platform.DriverSettings)

Set pulse on hit and enable and relase rule on driver.

set_pulse_on_hit_and_release_rule(enable_switch, coil)
Set pulse on hit and release rule to driver.

set_pulse_on_hit_rule(enable_switch: mpf.core.platform.SwitchSettings, coil:
mpf.core.platform.DriverSettings)

Set pulse on hit rule on driver.

start()
Start listening for commands.

stop()
Stop platform and close connections.

update_firmware()→ str
Upgrade the firmware of the CPUs.

update_leds()
Update all the LEDs connected to a FAST controller.

This is done once per game loop for efficiency (i.e. all LEDs are sent as a single update rather than lots of
individual ones).

Also, every LED is updated every loop, even if it doesn’t change. This is in case some interference causes
a LED to change color. Since we update every loop, it will only be the wrong color for one tick.

self.machine.hardware_platforms[‘i2c_servo_controller’]

class mpf.platforms.i2c_servo_controller.I2CServoControllerHardwarePlatform(machine)
Bases: mpf.core.platform.ServoPlatform

7.3. API Reference 121

MPF Documentation Developer Documentation, Release 0.50.22

Supports the PCA9685/PCA9635 chip via I2C.

Accessing the i2c_servo_controller platform via code

Hardware platforms are stored in the self.machine.hardware_platforms dic-
tionary, so the i2c_servo_controller platform is available via self.machine.
hardware_platforms['i2c_servo_controller'].

Methods & Attributes

The i2c_servo_controller platform has the following methods & attributes available. Note that methods &
attributes inherited from base classes are not included here.

configure_servo(number: str)
Configure servo.

initialize()
Initialise platform.

stop()
Stop platform.

self.machine.hardware_platforms[‘lisy’]

class mpf.platforms.lisy.lisy.LisyHardwarePlatform(machine)
Bases: mpf.core.platform.SwitchPlatform, mpf.core.platform.
LightsPlatform, mpf.core.platform.DriverPlatform, mpf.core.
platform.SegmentDisplaySoftwareFlashPlatform, mpf.core.platform.
HardwareSoundPlatform, mpf.core.logging.LogMixin

LISY platform.

Accessing the lisy platform via code

Hardware platforms are stored in the self.machine.hardware_platforms dictionary, so the lisy plat-
form is available via self.machine.hardware_platforms['lisy'].

Methods & Attributes

The lisy platform has the following methods & attributes available. Note that methods & attributes inherited
from base classes are not included here.

clear_hw_rule(switch: mpf.core.platform.SwitchSettings, coil: mpf.core.platform.DriverSettings)
No rules on LISY.

configure_driver(config: mpf.core.platform.DriverConfig, number: str, platform_settings: dict)
→ mpf.platforms.interfaces.driver_platform_interface.DriverPlatformInterface

Configure a driver.

configure_hardware_sound_system()→ mpf.platforms.interfaces.hardware_sound_platform_interface.HardwareSoundPlatformInterface
Configure hardware sound.

configure_light(number: str, subtype: str, platform_settings: dict) →
mpf.platforms.interfaces.light_platform_interface.LightPlatformSoftwareFade

Configure light on LISY.

122 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

configure_segment_display(number: str)→ mpf.platforms.interfaces.segment_display_platform_interface.SegmentDisplaySoftwareFlashPlatformInterface
Configure a segment display.

configure_switch(number: str, config: mpf.core.platform.SwitchConfig, platform_config: dict)→
mpf.platforms.interfaces.switch_platform_interface.SwitchPlatformInterface

Configure a switch.

get_hw_switch_states()
Return current switch states.

initialize()
Initialise platform.

parse_light_number_to_channels(number: str, subtype: str)
Return a single light.

read_byte()→ Generator[[int, None], int]
Read one byte.

read_string()→ Generator[[int, None], bytes]
Read zero terminated string.

readuntil(separator, min_chars: int = 0)
Read until separator.

Parameters

• separator – Read until this separator byte.

• min_chars – Minimum message length before separator

send_byte(cmd: int, byte: bytes = None)
Send a command with optional payload.

send_string(cmd: int, string: str)
Send a command with null terminated string.

set_pulse_on_hit_and_enable_and_release_and_disable_rule(enable_switch:
mpf.core.platform.SwitchSettings,
disable_switch:
mpf.core.platform.SwitchSettings,
coil:
mpf.core.platform.DriverSettings)

No rules on LISY.

set_pulse_on_hit_and_enable_and_release_rule(enable_switch:
mpf.core.platform.SwitchSettings,
coil: mpf.core.platform.DriverSettings)

No rules on LISY.

set_pulse_on_hit_and_release_rule(enable_switch: mpf.core.platform.SwitchSettings, coil:
mpf.core.platform.DriverSettings)

No rules on LISY.

set_pulse_on_hit_rule(enable_switch: mpf.core.platform.SwitchSettings, coil:
mpf.core.platform.DriverSettings)

No rules on LISY.

start()
Start reading switch changes.

stop()
Stop platform.

7.3. API Reference 123

MPF Documentation Developer Documentation, Release 0.50.22

self.machine.hardware_platforms[‘mma8451’]

class mpf.platforms.mma8451.MMA8451Platform(machine)
Bases: mpf.core.platform.AccelerometerPlatform

MMA8451 accelerometer platform.

Accessing the mma8451 platform via code

Hardware platforms are stored in the self.machine.hardware_platforms dictionary, so the mma8451
platform is available via self.machine.hardware_platforms['mma8451'].

Methods & Attributes

The mma8451 platform has the following methods & attributes available. Note that methods & attributes inher-
ited from base classes are not included here.

configure_accelerometer(config, callback)
Configure MMA8451 accelerometer.

initialize()
Initialise MMA8451 platform.

stop()
Stop accelerometer poll tasks.

self.machine.hardware_platforms[‘mypinballs’]

class mpf.platforms.mypinballs.mypinballs.MyPinballsHardwarePlatform(machine)
Bases: mpf.core.platform.SegmentDisplayPlatform

Hardware platform for MyPinballs 7-segment controller.

Accessing the mypinballs platform via code

Hardware platforms are stored in the self.machine.hardware_platforms dictionary, so the mypin-
balls platform is available via self.machine.hardware_platforms['mypinballs'].

Methods & Attributes

The mypinballs platform has the following methods & attributes available. Note that methods & attributes
inherited from base classes are not included here.

configure_segment_display(number: str)→ mpf.platforms.interfaces.segment_display_platform_interface.SegmentDisplayPlatformInterface
Configure display.

initialize()
Initialise hardware.

send_cmd(cmd: bytes)
Send a byte command.

stop()
Stop platform.

124 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

self.machine.hardware_platforms[‘openpixel’]

class mpf.platforms.openpixel.OpenpixelHardwarePlatform(machine: MachineCon-
troller)

Bases: mpf.core.platform.LightsPlatform

Base class for the open pixel hardware platform.

Parameters machine – The main MachineController object.

Accessing the openpixel platform via code

Hardware platforms are stored in the self.machine.hardware_platforms dictionary, so the openpixel
platform is available via self.machine.hardware_platforms['openpixel'].

Methods & Attributes

The openpixel platform has the following methods & attributes available. Note that methods & attributes inher-
ited from base classes are not included here.

configure_light(number, subtype, platform_settings)→ mpf.platforms.interfaces.light_platform_interface.LightPlatformInterface
Configure an LED.

initialize()
Initialise openpixel platform.

parse_light_number_to_channels(number: str, subtype: str)
Parse number to three channels.

stop()
Stop platform.

self.machine.hardware_platforms[‘opp’]

class mpf.platforms.opp.opp.OppHardwarePlatform(machine)
Bases: mpf.core.platform.LightsPlatform, mpf.core.platform.SwitchPlatform,
mpf.core.platform.DriverPlatform

Platform class for the OPP hardware.

Parameters machine – The main MachineController instance.

Accessing the opp platform via code

Hardware platforms are stored in the self.machine.hardware_platforms dictionary, so the opp plat-
form is available via self.machine.hardware_platforms['opp'].

Methods & Attributes

The opp platform has the following methods & attributes available. Note that methods & attributes inherited
from base classes are not included here.

7.3. API Reference 125

MPF Documentation Developer Documentation, Release 0.50.22

clear_hw_rule(switch: mpf.core.platform.SwitchSettings, coil: mpf.core.platform.DriverSettings)
Clear a hardware rule.

This is used if you want to remove the linkage between a switch and some driver activity. For example, if
you wanted to disable your flippers (so that a player pushing the flipper buttons wouldn’t cause the flippers
to flip), you’d call this method with your flipper button as the sw_num.

configure_driver(config: mpf.core.platform.DriverConfig, number: str, platform_settings: dict)
Configure a driver.

Parameters config – Config dict.

configure_light(number, subtype, platform_settings)
Configure a led or matrix light.

configure_switch(number: str, config: mpf.core.platform.SwitchConfig, platform_config: dict)
Configure a switch.

Parameters config – Config dict.

static eom_resp(chain_serial, msg)
Process an EOM.

Parameters

• chain_serial – Serial of the chain which received the message.

• msg – Message to parse.

classmethod get_coil_config_section()
Return coil config section.

get_gen2_cfg_resp(chain_serial, msg)
Process cfg response.

Parameters

• chain_serial – Serial of the chain which received the message.

• msg – Message to parse.

get_hw_switch_states()
Get initial hardware switch states.

This changes switches from active low to active high

get_info_string()
Dump infos about boards.

initialize()
Initialise connections to OPP hardware.

inv_resp(chain_serial, msg)
Parse inventory response.

Parameters

• chain_serial – Serial of the chain which received the message.

• msg – Message to parse.

light_sync()
Update lights.

parse_light_number_to_channels(number: str, subtype: str)
Parse number and subtype to channel.

126 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

process_received_message(chain_serial, msg)
Send an incoming message from the OPP hardware to the proper method for servicing.

Parameters

• chain_serial – Serial of the chain which received the message.

• msg – Message to parse.

read_gen2_inp_resp(chain_serial, msg)
Read switch changes.

Parameters

• chain_serial – Serial of the chain which received the message.

• msg – Message to parse.

read_gen2_inp_resp_initial(chain_serial, msg)
Read initial switch states.

Parameters

• chain_serial – Serial of the chain which received the message.

• msg – Message to parse.

read_matrix_inp_resp(chain_serial, msg)
Read matrix switch changes.

Parameters

• chain_serial – Serial of the chain which received the message.

• msg – Message to parse.

read_matrix_inp_resp_initial(chain_serial, msg)
Read initial matrix switch states.

Parameters

• chain_serial – Serial of the chain which received the message.

• msg – Message to parse.

register_processor_connection(serial_number, communicator)
Register the processors to the platform.

Parameters

• serial_number – Serial number of chain.

• communicator – Instance of OPPSerialCommunicator

send_to_processor(chain_serial, msg)
Send message to processor with specific serial number.

Parameters

• chain_serial – Serial of the processor.

• msg – Message to send.

7.3. API Reference 127

MPF Documentation Developer Documentation, Release 0.50.22

set_pulse_on_hit_and_enable_and_release_and_disable_rule(enable_switch:
mpf.core.platform.SwitchSettings,
disable_switch:
mpf.core.platform.SwitchSettings,
coil:
mpf.core.platform.DriverSettings)

Set pulse on hit and enable and release and disable rule on driver.

Pulses a driver when a switch is hit. Then enables the driver (may be with pwm). When the switch is
released the pulse is canceled and the driver gets disabled. When the second disable_switch is hit the pulse
is canceled and the driver gets disabled. Typically used on the main coil for dual coil flippers with eos
switch.

set_pulse_on_hit_and_enable_and_release_rule(enable_switch:
mpf.core.platform.SwitchSettings,
coil: mpf.core.platform.DriverSettings)

Set pulse on hit and enable and relase rule on driver.

Pulses a driver when a switch is hit. Then enables the driver (may be with pwm). When the switch is
released the pulse is canceled and the driver gets disabled. Typically used for single coil flippers.

set_pulse_on_hit_and_release_rule(enable_switch: mpf.core.platform.SwitchSettings, coil:
mpf.core.platform.DriverSettings)

Set pulse on hit and release rule to driver.

Pulses a driver when a switch is hit. When the switch is released the pulse is canceled. Typically used on
the main coil for dual coil flippers without eos switch.

set_pulse_on_hit_rule(enable_switch: mpf.core.platform.SwitchSettings, coil:
mpf.core.platform.DriverSettings)

Set pulse on hit rule on driver.

Pulses a driver when a switch is hit. When the switch is released the pulse continues. Typically used for
autofire coils such as pop bumpers.

start()
Start listening for commands.

stop()
Stop hardware and close connections.

update_incand()
Update all the incandescents connected to OPP hardware.

This is done once per game loop if changes have been made.

It is currently assumed that the UART oversampling will guarantee proper communication with the boards.
If this does not end up being the case, this will be changed to update all the incandescents each loop.

vers_resp(chain_serial, msg)
Process version response.

Parameters

• chain_serial – Serial of the chain which received the message.

• msg – Message to parse.

self.machine.hardware_platforms[‘p3_roc’]

class mpf.platforms.p3_roc.P3RocHardwarePlatform(machine)
Bases: mpf.platforms.p_roc_common.PROCBasePlatform, mpf.core.platform.

128 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

I2cPlatform, mpf.core.platform.AccelerometerPlatform

Platform class for the P3-ROC hardware controller.

Parameters machine – The MachineController instance.

machine
The MachineController instance.

Accessing the p3_roc platform via code

Hardware platforms are stored in the self.machine.hardware_platforms dictionary, so the p3_roc
platform is available via self.machine.hardware_platforms['p3_roc'].

Methods & Attributes

The p3_roc platform has the following methods & attributes available. Note that methods & attributes inherited
from base classes are not included here.

configure_accelerometer(config, callback)
Configure the accelerometer on the P3-ROC.

configure_driver(config: mpf.core.platform.DriverConfig, number: str, platform_settings: dict)
Create a P3-ROC driver.

Typically drivers are coils or flashers, but for the P3-ROC this is also used for matrix-based lights.

Parameters config – Dictionary of settings for the driver.

Returns A reference to the PROCDriver object which is the actual object you can use to pulse(),
patter(), enable(), etc.

configure_switch(number: str, config: mpf.core.platform.SwitchConfig, platform_config: dict)
Configure a P3-ROC switch.

Parameters config – Dictionary of settings for the switch. In the case of the P3-ROC, it uses
the following:

Returns: A configured switch object.

get_hw_switch_states()
Read in and set the initial switch state.

The P-ROC uses the following values for hw switch states: 1 - closed (debounced) 2 - open (debounced) 3
- closed (not debounced) 4 - open (not debounced)

get_info_string()
Dump infos about boards.

i2c_read16(address, register)
Read an 16-bit value from the I2C bus of the P3-Roc.

i2c_read8(address, register)
Read an 8-bit value from the I2C bus of the P3-Roc.

i2c_read_block(address, register, count)
Read block via I2C.

i2c_write8(address, register, value)
Write an 8-bit value to the I2C bus of the P3-Roc.

7.3. API Reference 129

MPF Documentation Developer Documentation, Release 0.50.22

classmethod scale_accelerometer_to_g(raw_value)
Convert internal representation to g.

tick()
Check the P3-ROC for any events (switch state changes).

Also tickles the watchdog and flushes any queued commands to the P3-ROC.

self.machine.hardware_platforms[‘p_roc’]

class mpf.platforms.p_roc.PRocHardwarePlatform(machine)
Bases: mpf.platforms.p_roc_common.PROCBasePlatform, mpf.core.platform.
DmdPlatform, mpf.core.platform.SegmentDisplayPlatform

Platform class for the P-ROC hardware controller.

Parameters machine – The MachineController instance.

machine
The MachineController instance.

Accessing the p_roc platform via code

Hardware platforms are stored in the self.machine.hardware_platforms dictionary, so the p_roc
platform is available via self.machine.hardware_platforms['p_roc'].

Methods & Attributes

The p_roc platform has the following methods & attributes available. Note that methods & attributes inherited
from base classes are not included here.

configure_dmd()
Configure a hardware DMD connected to a classic P-ROC.

configure_driver(config: mpf.core.platform.DriverConfig, number: str, platform_settings: dict)
Create a P-ROC driver.

Typically drivers are coils or flashers, but for the P-ROC this is also used for matrix-based lights.

Parameters config – Dictionary of settings for the driver.

Returns A reference to the PROCDriver object which is the actual object you can use to pulse(),
patter(), enable(), etc.

configure_segment_display(number: str)→ mpf.platforms.interfaces.segment_display_platform_interface.SegmentDisplayPlatformInterface
Configure display.

configure_switch(number: str, config: mpf.core.platform.SwitchConfig, platform_config: dict)
Configure a P-ROC switch.

Parameters

• number – String number of the switch to configure.

• config – SwitchConfig settings.

Returns: A configured switch object.

130 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

get_hw_switch_states()
Read in and set the initial switch state.

The P-ROC uses the following values for hw switch states: 1 - closed (debounced) 2 - open (debounced) 3
- closed (not debounced) 4 - open (not debounced)

get_info_string()
Dump infos about boards.

tick()
Check the P-ROC for any events (switch state changes or notification that a DMD frame was updated).

Also tickles the watchdog and flushes any queued commands to the P-ROC.

self.machine.hardware_platforms[‘pololu_maestro’]

class mpf.platforms.pololu_maestro.PololuMaestroHardwarePlatform(machine)
Bases: mpf.core.platform.ServoPlatform

Supports the Pololu Maestro servo controllers via PySerial.

Works with Micro Maestro 6, and Mini Maestro 12, 18, and 24.

Accessing the pololu_maestro platform via code

Hardware platforms are stored in the self.machine.hardware_platforms
dictionary, so the pololu_maestro platform is available via self.machine.
hardware_platforms['pololu_maestro'].

Methods & Attributes

The pololu_maestro platform has the following methods & attributes available. Note that methods & attributes
inherited from base classes are not included here.

configure_servo(number: str)
Configure a servo device in paltform.

Parameters config (dict) – Configuration of device

initialize()
Initialise platform.

stop()
Close serial.

self.machine.hardware_platforms[‘rpi’]

class mpf.platforms.rpi.rpi.RaspberryPiHardwarePlatform(machine)
Bases: mpf.core.platform.SwitchPlatform, mpf.core.platform.DriverPlatform,
mpf.core.platform.ServoPlatform, mpf.core.platform.I2cPlatform

Control the hardware of a Raspberry Pi.

Works locally and remotely via network.

7.3. API Reference 131

MPF Documentation Developer Documentation, Release 0.50.22

Accessing the rpi platform via code

Hardware platforms are stored in the self.machine.hardware_platforms dictionary, so the rpi plat-
form is available via self.machine.hardware_platforms['rpi'].

Methods & Attributes

The rpi platform has the following methods & attributes available. Note that methods & attributes inherited
from base classes are not included here.

clear_hw_rule(switch: mpf.core.platform.SwitchSettings, coil: mpf.core.platform.DriverSettings)
Raise exception.

configure_driver(config: mpf.core.platform.DriverConfig, number: str, platform_settings: dict)
→ mpf.platforms.interfaces.driver_platform_interface.DriverPlatformInterface

Configure an output on the Raspberry Pi.

configure_servo(number: str)→ mpf.platforms.interfaces.servo_platform_interface.ServoPlatformInterface
Configure a servo.

configure_switch(number: str, config: mpf.core.platform.SwitchConfig, platform_config: dict)→
mpf.platforms.interfaces.switch_platform_interface.SwitchPlatformInterface

Configure a switch with pull up.

get_hw_switch_states()
Return current switch states.

i2c_read8(address, register)
Read from i2c via pigpio.

i2c_read_block(address, register, count)
Read block via I2C.

i2c_write8(address, register, value)
Write to i2c via pigpio.

initialize()
Initialise platform.

send_command(cmd)
Add a command to the command queue.

set_pulse_on_hit_and_enable_and_release_and_disable_rule(enable_switch:
mpf.core.platform.SwitchSettings,
disable_switch:
mpf.core.platform.SwitchSettings,
coil:
mpf.core.platform.DriverSettings)

Raise exception.

set_pulse_on_hit_and_enable_and_release_rule(enable_switch:
mpf.core.platform.SwitchSettings,
coil: mpf.core.platform.DriverSettings)

Raise exception.

set_pulse_on_hit_and_release_rule(enable_switch: mpf.core.platform.SwitchSettings, coil:
mpf.core.platform.DriverSettings)

Raise exception.

132 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

set_pulse_on_hit_rule(enable_switch: mpf.core.platform.SwitchSettings, coil:
mpf.core.platform.DriverSettings)

Raise exception.

stop()
Stop platform.

self.machine.hardware_platforms[‘smart_virtual’]

class mpf.platforms.smart_virtual.SmartVirtualHardwarePlatform(machine)
Bases: mpf.platforms.virtual.VirtualHardwarePlatform

Base class for the smart_virtual hardware platform.

Accessing the smart_virtual platform via code

Hardware platforms are stored in the self.machine.hardware_platforms dictionary, so the
smart_virtual platform is available via self.machine.hardware_platforms['smart_virtual'].

Methods & Attributes

The smart_virtual platform has the following methods & attributes available. Note that methods & attributes
inherited from base classes are not included here.

add_ball_to_device(device)
Add ball to device.

configure_driver(config: mpf.core.platform.DriverConfig, number: str, platform_settings: dict)
Configure driver.

start()
Initialise platform when all devices are ready.

self.machine.hardware_platforms[‘smartmatrix’]

class mpf.platforms.smartmatrix.SmartMatrixHardwarePlatform(machine)
Bases: mpf.core.platform.RgbDmdPlatform

SmartMatrix RGB DMD.

Accessing the smartmatrix platform via code

Hardware platforms are stored in the self.machine.hardware_platforms dictionary, so the smartma-
trix platform is available via self.machine.hardware_platforms['smartmatrix'].

Methods & Attributes

The smartmatrix platform has the following methods & attributes available. Note that methods & attributes
inherited from base classes are not included here.

configure_rgb_dmd(name: str)
Configure rgb dmd.

7.3. API Reference 133

MPF Documentation Developer Documentation, Release 0.50.22

initialize()
Initialise platform.

stop()
Stop platform.

self.machine.hardware_platforms[‘smbus2’]

class mpf.platforms.smbus2.Smbus2(machine)
Bases: mpf.core.platform.I2cPlatform

I2C platform which uses the smbus interface on linux via the smbus2 python extension.

Accessing the smbus2 platform via code

Hardware platforms are stored in the self.machine.hardware_platforms dictionary, so the smbus2
platform is available via self.machine.hardware_platforms['smbus2'].

Methods & Attributes

The smbus2 platform has the following methods & attributes available. Note that methods & attributes inherited
from base classes are not included here.

i2c_read8(address, register)
Read a byte from I2C.

i2c_read_block(address, register, count)
Read a block from I2C.

i2c_write8(address, register, value)
Write a byte to I2C.

initialize()
Check if smbus2 extension has been imported.

self.machine.hardware_platforms[‘snux’]

class mpf.platforms.snux.SnuxHardwarePlatform(machine: mpf.core.machine.MachineController)
Bases: mpf.core.platform.DriverPlatform

Overlay platform for the snux hardware board.

Accessing the snux platform via code

Hardware platforms are stored in the self.machine.hardware_platforms dictionary, so the snux plat-
form is available via self.machine.hardware_platforms['snux'].

Methods & Attributes

The snux platform has the following methods & attributes available. Note that methods & attributes inherited
from base classes are not included here.

a_side_busy
Return if A side cannot be switches off right away.

134 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

c_side_active
Return if C side cannot be switches off right away.

clear_hw_rule(switch, coil)
Clear a rule for a driver on the snux board.

configure_driver(config: mpf.core.platform.DriverConfig, number: str, platform_settings: dict)
Configure a driver on the snux board.

Parameters config – Driver config dict

driver_action(driver, pulse_settings: Optional[mpf.platforms.interfaces.driver_platform_interface.PulseSettings],
hold_settings: Optional[mpf.platforms.interfaces.driver_platform_interface.HoldSettings])

Add a driver action for a switched driver to the queue (for either the A-side or C-side queue).

Parameters

• driver – A reference to the original platform class Driver instance.

• pulse_settings – Settings for the pulse or None

• hold_settings – Settings for hold or None

This action will be serviced immediately if it can, or ASAP otherwise.

initialize()
Automatically called by the Platform class after all the core modules are loaded.

set_pulse_on_hit_and_enable_and_release_and_disable_rule(enable_switch, dis-
able_switch, coil)

Configure a rule for a driver on the snux board.

Will pass the call onto the parent platform if the driver is not on A/C relay.

set_pulse_on_hit_and_enable_and_release_rule(enable_switch, coil)
Configure a rule for a driver on the snux board.

Will pass the call onto the parent platform if the driver is not on A/C relay.

set_pulse_on_hit_and_release_rule(enable_switch, coil)
Configure a rule for a driver on the snux board.

Will pass the call onto the parent platform if the driver is not on A/C relay.

set_pulse_on_hit_rule(enable_switch, coil)
Configure a rule on the snux board.

Will pass the call onto the parent platform if the driver is not on A/C relay.

stop()
Stop the overlay. Nothing to do here because stop is also called on parent platform.

tick()
Snux main loop.

Called based on the timer_tick event

validate_coil_section(driver, config)
Validate coil config for platform.

self.machine.hardware_platforms[‘spike’]

class mpf.platforms.spike.spike.SpikePlatform(machine)
Bases: mpf.core.platform.SwitchPlatform, mpf.core.platform.LightsPlatform,
mpf.core.platform.DriverPlatform, mpf.core.platform.DmdPlatform

7.3. API Reference 135

MPF Documentation Developer Documentation, Release 0.50.22

Stern Spike Platform.

Accessing the spike platform via code

Hardware platforms are stored in the self.machine.hardware_platforms dictionary, so the spike
platform is available via self.machine.hardware_platforms['spike'].

Methods & Attributes

The spike platform has the following methods & attributes available. Note that methods & attributes inherited
from base classes are not included here.

clear_hw_rule(switch, coil)
Disable hardware rule for this coil.

configure_dmd()
Configure a DMD.

configure_driver(config: mpf.core.platform.DriverConfig, number: str, platform_settings: dict)
Configure a driver on Stern Spike.

configure_light(number, subtype, platform_settings)→ mpf.platforms.spike.spike.SpikeLight
Configure a light on Stern Spike.

configure_switch(number: str, config: mpf.core.platform.SwitchConfig, platform_config: dict)
Configure switch on Stern Spike.

get_hw_switch_states()
Return current switch states.

initialize()
Initialise platform.

parse_light_number_to_channels(number: str, subtype: str)
Return a single light.

send_cmd_and_wait_for_response(node, cmd, data, response_len) → Generator[[int, None],
Optional[bytearray]]

Send cmd and wait for response.

send_cmd_async(node, cmd, data)
Send cmd which does not require a response.

send_cmd_raw(data, wait_ms=0)
Send raw command.

send_cmd_sync(node, cmd, data)
Send cmd which does not require a response.

set_pulse_on_hit_and_enable_and_release_and_disable_rule(enable_switch:
mpf.core.platform.SwitchSettings,
disable_switch:
mpf.core.platform.SwitchSettings,
coil:
mpf.core.platform.DriverSettings)

Set pulse on hit and release rule to driver.

Used for high-power coil on dual-wound flippers. Example from WWE: Type: 8 Cmd: 65 Node: 8 Msg:
0x00 0xff 0x33 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x42 0x40
0x00 0x02 0x06 0x00 Len: 25

136 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

set_pulse_on_hit_and_enable_and_release_rule(enable_switch:
mpf.core.platform.SwitchSettings,
coil: mpf.core.platform.DriverSettings)

Set pulse on hit and enable and relase rule on driver.

Used for single coil flippers. Examples from WWE: Dual-wound flipper hold coil: Type: 8 Cmd: 65 Node:
8 Msg: 0x02 0xff 0x46 0x01 0xff 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x3a 0x00 0x42
0x40 0x00 0x00 0x01 0x00 Len: 25

Ring Slings (different flags): Type: 8 Cmd: 65 Node: 10 Msg: 0x00 0xff 0x19 0x00 0x14 0x00 0x00 0x00
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x80 0x00 0x4a 0x40 0x00 0x00 0x06 0x05 Len: 25

set_pulse_on_hit_and_release_rule(enable_switch: mpf.core.platform.SwitchSettings, coil:
mpf.core.platform.DriverSettings)

Set pulse on hit and release rule to driver.

I believe that param2 == 1 means that it will cancel the pulse when the switch is released.

Used for high-power coils on dual-wound flippers. Example from WWE: Type: 8 Cmd: 65 Node: 8 Msg:
0x03 0xff 0x46 0x01 0xff 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x43 0x40
0x00 0x00 0x01 0x00 Len: 25

set_pulse_on_hit_rule(enable_switch: mpf.core.platform.SwitchSettings, coil:
mpf.core.platform.DriverSettings)

Set pulse on hit rule on driver.

This is mostly used for popbumpers. Example from WWE: Type: 8 Cmd: 65 Node: 9 Msg: 0x00 0xa6
0x28 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x14 0x00 0x00 0x00 0x38 0x00 0x40 0x00 0x00 0x00
0x00 0x00 Len: 25

stop()
Stop hardware and close connections.

self.machine.hardware_platforms[‘trinamics_steprocker’]

class mpf.platforms.trinamics_steprocker.TrinamicsStepRocker(machine)
Bases: mpf.core.platform.StepperPlatform

Supports the Trinamics Step Rocker via PySerial.

Works with Trinamics Step Rocker. TBD other ‘TMCL’ based steppers eval boards

Accessing the trinamics_steprocker platform via code

Hardware platforms are stored in the self.machine.hardware_platforms dic-
tionary, so the trinamics_steprocker platform is available via self.machine.
hardware_platforms['trinamics_steprocker'].

Methods & Attributes

The trinamics_steprocker platform has the following methods & attributes available. Note that methods &
attributes inherited from base classes are not included here.

configure_stepper(number: str, config: dict)→ mpf.platforms.trinamics_steprocker.TrinamicsTMCLStepper
Configure a smart stepper device in platform.

Parameters config (dict) – Configuration of device

7.3. API Reference 137

MPF Documentation Developer Documentation, Release 0.50.22

initialize()
Initialise trinamics steprocker platform.

stop()
Close serial.

self.machine.hardware_platforms[‘virtual’]

class mpf.platforms.virtual.VirtualHardwarePlatform(machine)
Bases: mpf.core.platform.AccelerometerPlatform, mpf.core.platform.I2cPlatform,
mpf.core.platform.ServoPlatform, mpf.core.platform.LightsPlatform, mpf.
core.platform.SwitchPlatform, mpf.core.platform.DriverPlatform, mpf.core.
platform.DmdPlatform, mpf.core.platform.RgbDmdPlatform, mpf.core.platform.
SegmentDisplayPlatform, mpf.core.platform.StepperPlatform, mpf.core.
platform.HardwareSoundPlatform

Base class for the virtual hardware platform.

Accessing the virtual platform via code

Hardware platforms are stored in the self.machine.hardware_platforms dictionary, so the virtual
platform is available via self.machine.hardware_platforms['virtual'].

Methods & Attributes

The virtual platform has the following methods & attributes available. Note that methods & attributes inherited
from base classes are not included here.

clear_hw_rule(switch, coil)
Clear hw rule.

configure_accelerometer(config, callback)
Configure accelerometer.

configure_dmd()
Configure DMD.

configure_driver(config: mpf.core.platform.DriverConfig, number: str, platform_settings: dict)
Configure driver.

configure_hardware_sound_system()→ mpf.platforms.interfaces.hardware_sound_platform_interface.HardwareSoundPlatformInterface
Configure virtual hardware sound system.

configure_light(number, subtype, platform_settings)
Configure light channel.

configure_rgb_dmd(name: str)
Configure DMD.

configure_segment_display(number: str)→ mpf.platforms.interfaces.segment_display_platform_interface.SegmentDisplayPlatformInterface
Configure segment display.

configure_servo(number: str)
Configure a servo device in paltform.

configure_stepper(number: str, config: dict)
Configure a smart stepper / axis device in platform.

138 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

configure_switch(number: str, config: mpf.core.platform.SwitchConfig, platform_config: dict)
Configure switch.

get_hw_switch_states()
Return hw switch states.

i2c_read16(address, register)
Read I2C.

i2c_read8(address, register)
Read I2C.

i2c_read_block(address, register, count)
Read I2C block.

i2c_write8(address, register, value)
Write to I2C.

initialize()
Initialise platform.

parse_light_number_to_channels(number: str, subtype: str)
Parse channel str to a list of channels.

set_pulse_on_hit_and_enable_and_release_and_disable_rule(enable_switch, dis-
able_switch, coil)

Set rule.

set_pulse_on_hit_and_enable_and_release_rule(enable_switch, coil)
Set rule.

set_pulse_on_hit_and_release_rule(enable_switch, coil)
Set rule.

set_pulse_on_hit_rule(enable_switch, coil)
Set rule.

stop()
Stop platform.

validate_coil_section(driver, config)
Validate coil sections.

validate_switch_section(switch, config)
Validate switch sections.

self.machine.hardware_platforms[‘virtual_pinball’]

class mpf.platforms.virtual_pinball.virtual_pinball.VirtualPinballPlatform(machine)
Bases: mpf.core.platform.LightsPlatform, mpf.core.platform.SwitchPlatform,
mpf.core.platform.DriverPlatform

VPX platform.

Accessing the virtual_pinball platform via code

Hardware platforms are stored in the self.machine.hardware_platforms
dictionary, so the virtual_pinball platform is available via self.machine.
hardware_platforms['virtual_pinball'].

7.3. API Reference 139

MPF Documentation Developer Documentation, Release 0.50.22

Methods & Attributes

The virtual_pinball platform has the following methods & attributes available. Note that methods & attributes
inherited from base classes are not included here.

clear_hw_rule(switch: mpf.core.platform.SwitchSettings, coil: mpf.core.platform.DriverSettings)
Clear a hw rule.

configure_driver(config: mpf.core.platform.DriverConfig, number: str, platform_settings: dict)
→ mpf.platforms.interfaces.driver_platform_interface.DriverPlatformInterface

Configure VPX driver.

configure_light(number: str, subtype: str, platform_settings: dict) →
mpf.platforms.interfaces.light_platform_interface.LightPlatformInterface

Configure a VPX light.

configure_switch(number: str, config: mpf.core.platform.SwitchConfig, platform_config: dict)→
mpf.platforms.interfaces.switch_platform_interface.SwitchPlatformInterface

Configure VPX switch.

get_hw_switch_states()
Return initial switch state.

initialize()
Initialise platform.

parse_light_number_to_channels(number: str, subtype: str)
Parse channel str to a list of channels.

set_pulse_on_hit_and_enable_and_release_and_disable_rule(enable_switch:
mpf.core.platform.SwitchSettings,
disable_switch:
mpf.core.platform.SwitchSettings,
coil:
mpf.core.platform.DriverSettings)

Write rule.

set_pulse_on_hit_and_enable_and_release_rule(enable_switch:
mpf.core.platform.SwitchSettings,
coil: mpf.core.platform.DriverSettings)

Write rule.

set_pulse_on_hit_and_release_rule(enable_switch: mpf.core.platform.SwitchSettings, coil:
mpf.core.platform.DriverSettings)

Write rule.

set_pulse_on_hit_rule(enable_switch: mpf.core.platform.SwitchSettings, coil:
mpf.core.platform.DriverSettings)

Write rule.

vpx_changed_gi_strings()
Return changed lamps since last call.

vpx_changed_lamps()
Return changed lamps since last call.

vpx_changed_solenoids()
Return changed solenoids since last call.

vpx_get_mech(number)
Not implemented.

140 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

vpx_get_switch(number)
Return switch value.

vpx_mech(number)
Not implemented.

vpx_set_mech(number, value)
Not implemented.

vpx_set_switch(number, value)
Update switch from VPX.

vpx_start()
Start machine.

vpx_switch(number)
Return switch value.

7.3.5 Config Players

Config players are available as machine attributes in the form of their player name plus _player, for example,
self.machine.light_player or self.machine.score_player.

self.machine.blocking_player

class mpf.config_players.block_event_player.BlockEventPlayer(machine)
Bases: mpf.core.config_player.ConfigPlayer

Posts events based on config.

Accessing the blocking_player in code

The blocking_player is available via self.machine.blocking_player.

Methods & Attributes

The blocking_player has the following methods & attributes available. Note that methods & attributes inherited
from the base class are not included here.

get_express_config(value)
Parse short config.

play(settings, context, calling_context, priority=0, **kwargs)
Block event.

validate_config_entry(settings: dict, name: str)→ dict
Validate one entry of this player.

self.machine.coil_player

class mpf.config_players.coil_player.CoilPlayer(machine)
Bases: mpf.config_players.device_config_player.DeviceConfigPlayer

Triggers coils based on config.

7.3. API Reference 141

MPF Documentation Developer Documentation, Release 0.50.22

Accessing the coil_player in code

The coil_player is available via self.machine.coil_player.

Methods & Attributes

The coil_player has the following methods & attributes available. Note that methods & attributes inherited from
the base class are not included here.

clear_context(context)
Disable enabled coils.

get_express_config(value: str)
Parse short config version.

play(settings, context: str, calling_context: str, priority: int = 0, **kwargs)
Enable, Pulse or disable coils.

self.machine.event_player

class mpf.config_players.event_player.EventPlayer(machine)
Bases: mpf.config_players.flat_config_player.FlatConfigPlayer

Posts events based on config.

Accessing the event_player in code

The event_player is available via self.machine.event_player.

Methods & Attributes

The event_player has the following methods & attributes available. Note that methods & attributes inherited
from the base class are not included here.

get_express_config(value)
Parse short config.

get_list_config(value)
Parse list.

play(settings, context, calling_context, priority=0, **kwargs)
Post (delayed) events.

self.machine.flasher_player

class mpf.config_players.flasher_player.FlasherPlayer(machine)
Bases: mpf.config_players.device_config_player.DeviceConfigPlayer

Triggers flashers based on config.

Accessing the flasher_player in code

The flasher_player is available via self.machine.flasher_player.

142 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

Methods & Attributes

The flasher_player has the following methods & attributes available. Note that methods & attributes inherited
from the base class are not included here.

get_express_config(value)
Parse express config.

play(settings, context, calling_context, priority=0, **kwargs)
Flash flashers.

self.machine.hardware_sound_player_player

class mpf.config_players.hardware_sound_player.HardwareSoundPlayer(machine)
Bases: mpf.config_players.device_config_player.DeviceConfigPlayer

Plays sounds on an external sound card.

Accessing the hardware_sound_player_player in code

The hardware_sound_player_player is available via self.machine.
hardware_sound_player_player.

Methods & Attributes

The hardware_sound_player_player has the following methods & attributes available. Note that methods &
attributes inherited from the base class are not included here.

get_express_config(value)
Parse express config.

get_string_config(string)
Parse string config.

play(settings, context, calling_context, priority=0, **kwargs)
Play sound on external card.

self.machine.light_player

class mpf.config_players.light_player.LightPlayer(machine)
Bases: mpf.config_players.device_config_player.DeviceConfigPlayer

Sets lights based on config.

Accessing the light_player in code

The light_player is available via self.machine.light_player.

Methods & Attributes

The light_player has the following methods & attributes available. Note that methods & attributes inherited
from the base class are not included here.

7.3. API Reference 143

MPF Documentation Developer Documentation, Release 0.50.22

clear_context(context)
Remove all colors which were set in context.

get_express_config(value)
Parse express config.

get_full_config(value)
Return full config.

handle_subscription_change(value, settings, priority, context)
Handle subscriptions.

play(settings, context, calling_context, priority=0, **kwargs)
Set light color based on config.

self.machine.queue_event_player

class mpf.config_players.queue_event_player.QueueEventPlayer(machine)
Bases: mpf.core.config_player.ConfigPlayer

Posts queue events based on config.

Accessing the queue_event_player in code

The queue_event_player is available via self.machine.queue_event_player.

Methods & Attributes

The queue_event_player has the following methods & attributes available. Note that methods & attributes
inherited from the base class are not included here.

get_express_config(value)
No express config.

play(settings, context, calling_context, priority=0, **kwargs)
Post queue events.

validate_config_entry(settings, name)
Validate one entry of this player.

self.machine.queue_relay_player

class mpf.config_players.queue_relay_player.QueueRelayPlayer(machine)
Bases: mpf.core.config_player.ConfigPlayer

Blocks queue events and converts them to normal events.

Accessing the queue_relay_player in code

The queue_relay_player is available via self.machine.queue_relay_player.

144 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

Methods & Attributes

The queue_relay_player has the following methods & attributes available. Note that methods & attributes inher-
ited from the base class are not included here.

clear_context(context)
Clear all queues and remove handlers.

get_express_config(value)
No express config.

play(settings, context, calling_context, priority=0, **kwargs)
Block queue event.

validate_config_entry(settings, name)
Validate one entry of this player.

self.machine.random_event_player

class mpf.config_players.random_event_player.RandomEventPlayer(machine)
Bases: mpf.core.config_player.ConfigPlayer

Plays a random event based on config.

Accessing the random_event_player in code

The random_event_player is available via self.machine.random_event_player.

Methods & Attributes

The random_event_player has the following methods & attributes available. Note that methods & attributes
inherited from the base class are not included here.

get_express_config(value)
Parse express config.

get_list_config(value)
Parse list.

static is_entry_valid_outside_mode(settings)→ bool
Return true if scope is not player.

play(settings, context, calling_context, priority=0, **kwargs)
Play a random event from list based on config.

validate_config_entry(settings, name)
Validate one entry of this player.

self.machine.segment_display_player_player

class mpf.config_players.segment_display_player.SegmentDisplayPlayer(machine)
Bases: mpf.config_players.device_config_player.DeviceConfigPlayer

Generates texts on segment displays.

7.3. API Reference 145

MPF Documentation Developer Documentation, Release 0.50.22

Accessing the segment_display_player_player in code

The segment_display_player_player is available via self.machine.
segment_display_player_player.

Methods & Attributes

The segment_display_player_player has the following methods & attributes available. Note that methods &
attributes inherited from the base class are not included here.

clear_context(context)
Remove all texts.

get_express_config(value)
Parse express config.

play(settings, context, calling_context, priority=0, **kwargs)
Show text on display.

self.machine.show_player

class mpf.config_players.show_player.ShowPlayer(machine)
Bases: mpf.config_players.device_config_player.DeviceConfigPlayer

Plays, starts, stops, pauses, resumes or advances shows based on config.

Accessing the show_player in code

The show_player is available via self.machine.show_player.

Methods & Attributes

The show_player has the following methods & attributes available. Note that methods & attributes inherited
from the base class are not included here.

clear_context(context)
Stop running shows from context.

get_express_config(value)
Parse express config.

handle_subscription_change(value, settings, priority, context)
Handle subscriptions.

play(settings, context, calling_context, priority=0, **kwargs)
Play, start, stop, pause, resume or advance show based on config.

self.machine.variable_player

class mpf.config_players.variable_player.VariablePlayer(machine:
mpf.core.machine.MachineController)

Bases: mpf.core.config_player.ConfigPlayer

Posts events based on config.

146 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

Accessing the variable_player in code

The variable_player is available via self.machine.variable_player.

Methods & Attributes

The variable_player has the following methods & attributes available. Note that methods & attributes inherited
from the base class are not included here.

clear_context(context: str)→ None
Clear context.

get_express_config(value: Any)→ dict
Parse express config.

get_list_config(value: Any)
Parse list.

static is_entry_valid_outside_mode(settings: dict)→ bool
Return true if this entry may run without a game and player.

play(settings: dict, context: str, calling_context: str, priority: int = 0, **kwargs)→ None
Variable name.

validate_config_entry(settings: dict, name: str)→ dict
Validate one entry of this player.

7.3.6 Testing Class API

MPF includes several unit test classes which you can use to write tests which test MPF or to write tests for your own
game.

These tests include several MPF-specific assertion methods for things like modes, players, balls, device states, etc., as
well as logic which advances the time and mocks the BCP and hardware connections.

You can add commands in your tests to “advance” the time which the MPF tests can test quickly, so you can test a
complete 3-minute game play session in a few hundred milliseconds of real world time.

It might be helpful to look at the real internal tests that MPF uses (which all use these test classes) to get a feel for how
tests are written in MPF. They’re available in the mpf/tests folder in the MPF repository. (They’re installed locally
when you install MPF.)

Here’s a diagram which shows how all the MPF and MPF-MC test case classes relate to each other:

7.3. API Reference 147

https://github.com/missionpinball/mpf/tree/dev/mpf/tests

MPF Documentation Developer Documentation, Release 0.50.22

And the API reference for each:

MockBcpClient

class mpf.tests.MpfBcpTestCase.MockBcpClient(machine, name, bcp)
Bases: mpf.core.bcp.bcp_client.BaseBcpClient

A Mock BCP Client.

This is used in tests require BCP for testing but where you don’t actually create a real BCP connection.

Methods & Attributes

The MockBcpClient has the following methods & attributes available. Note that methods & attributes inherited
from the base class are not included here.

accept_connection(receiver, sender)
Handle incoming connection from remote client.

connect(config)
Actively connect client.

ignorable_runtime_exception(msg: str)→ None
Handle ignorable runtime exception.

148 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

During development or tests raise an exception for easier debugging. Log an error during production.

raise_config_error(msg, error_no, *, context=None)
Raise a ConfigFileError exception.

read_message()
Read one message from client.

send(bcp_command, bcp_command_args)
Send data to client.

stop()
Stop client connection.

warning_log(msg: str, *args, context=None, **kwargs)→ None
Log a message at the warning level.

These messages will always be shown in the console and the log file.

MpfBcpTestCase

class mpf.tests.MpfBcpTestCase.MpfBcpTestCase(methodName=’runTest’)
Bases: mpf.tests.MpfTestCase.MpfTestCase

An MpfTestCase instance which uses the MockBcpClient.

Methods & Attributes

The MpfBcpTestCase has the following methods & attributes available. Note that methods & attributes inherited
from the base class are not included here.

advance_time_and_run(delta=1.0)
Advance the test clock and run anything that should run during that time.

Parameters delta – How much time to advance the test clock by (in seconds)

This method will cause anything scheduled during the time to run, including things like delays, timers, etc.

Advancing the clock will happen in multiple small steps if things are scheduled to happen during this
advance. For example, you can advance the clock 10 seconds like this:

self.advance_time_and_run(10)

If there is a delay callback that is scheduled to happen in 2 seconds, then this method will advance the
clock 2 seconds, process that delay, and then advance the remaining 8 seconds.

assertAlmostEqual(first, second, places=None, msg=None, delta=None)
Fail if the two objects are unequal as determined by their difference rounded to the given number of decimal
places (default 7) and comparing to zero, or by comparing that the between the two objects is more than
the given delta.

Note that decimal places (from zero) are usually not the same as significant digits (measured from the most
signficant digit).

If the two objects compare equal then they will automatically compare almost equal.

assertColorAlmostEqual(color1, color2, delta=6)
Assert that two color are almost equal.

Parameters

7.3. API Reference 149

MPF Documentation Developer Documentation, Release 0.50.22

• color1 – The first color, as an RGBColor instance or 3-item iterable.

• color2 – The second color, as an RGBColor instance or 3-item iterable.

• delta – How close the colors have to be. The deltas between red, green, and blue are
added together and must be less or equal to this value for this assertion to succeed.

assertCountEqual(first, second, msg=None)
An unordered sequence comparison asserting that the same elements, regardless of order. If the same
element occurs more than once, it verifies that the elements occur the same number of times.

self.assertEqual(Counter(list(first)), Counter(list(second)))

Example:

• [0, 1, 1] and [1, 0, 1] compare equal.

• [0, 0, 1] and [0, 1] compare unequal.

assertDictContainsSubset(subset, dictionary, msg=None)
Checks whether dictionary is a superset of subset.

assertEqual(first, second, msg=None)
Fail if the two objects are unequal as determined by the ‘==’ operator.

assertEventCalled(event_name, times=None)
Assert that event was called.

Parameters

• event_name – String name of the event to check.

• times – An optional value to confirm the number of times the event was called. Default
of None means this method will pass as long as the event has been called at least once.

If you want to reset the times count, you can mock the event again.

Note that the event must be mocked via self.mock_event() first in order to use this method.

For example:

self.mock_event('my_event')
self.assertEventNotCalled('my_event') # This will pass

self.post_event('my_event')
self.assertEventCalled('my_event') # This will pass
self.assertEventCalled('my_event', 1) # This will pass

self.post_event('my_event')
self.assertEventCalled('my_event') # This will pass
self.assertEventCalled('my_event', 2) # This will pass

assertEventCalledWith(event_name, **kwargs)
Assert an event was called with certain kwargs.

Parameters

• event_name – String name of the event to check.

• **kwargs – Name/value parameters to check.

For example:

150 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

self.mock_event('jackpot')

self.post_event('jackpot', count=1, first_time=True)
self.assertEventCalled('jackpot') # This will pass
self.assertEventCalledWith('jackpot', count=1, first_time=True) # This will
→˓also pass
self.assertEventCalledWith('jackpot', count=1, first_time=False) # This will
→˓fail

assertEventNotCalled(event_name)
Assert that event was not called.

Parameters event_name – String name of the event to check.

Note that the event must be mocked via self.mock_event() first in order to use this method.

assertFalse(expr, msg=None)
Check that the expression is false.

assertGreater(a, b, msg=None)
Just like self.assertTrue(a > b), but with a nicer default message.

assertGreaterEqual(a, b, msg=None)
Just like self.assertTrue(a >= b), but with a nicer default message.

assertIn(member, container, msg=None)
Just like self.assertTrue(a in b), but with a nicer default message.

assertIs(expr1, expr2, msg=None)
Just like self.assertTrue(a is b), but with a nicer default message.

assertIsInstance(obj, cls, msg=None)
Same as self.assertTrue(isinstance(obj, cls)), with a nicer default message.

assertIsNone(obj, msg=None)
Same as self.assertTrue(obj is None), with a nicer default message.

assertIsNot(expr1, expr2, msg=None)
Just like self.assertTrue(a is not b), but with a nicer default message.

assertIsNotNone(obj, msg=None)
Included for symmetry with assertIsNone.

assertLess(a, b, msg=None)
Just like self.assertTrue(a < b), but with a nicer default message.

assertLessEqual(a, b, msg=None)
Just like self.assertTrue(a <= b), but with a nicer default message.

assertListEqual(list1, list2, msg=None)
A list-specific equality assertion.

Parameters

• list1 – The first list to compare.

• list2 – The second list to compare.

• msg – Optional message to use on failure instead of a list of differences.

assertLogs(logger=None, level=None)
Fail unless a log message of level level or higher is emitted on logger_name or its children. If omitted,
level defaults to INFO and logger defaults to the root logger.

7.3. API Reference 151

MPF Documentation Developer Documentation, Release 0.50.22

This method must be used as a context manager, and will yield a recording object with two attributes:
output and records. At the end of the context manager, the output attribute will be a list of the matching
formatted log messages and the records attribute will be a list of the corresponding LogRecord objects.

Example:

with self.assertLogs('foo', level='INFO') as cm:
logging.getLogger('foo').info('first message')
logging.getLogger('foo.bar').error('second message')

self.assertEqual(cm.output, ['INFO:foo:first message',
'ERROR:foo.bar:second message'])

assertMultiLineEqual(first, second, msg=None)
Assert that two multi-line strings are equal.

assertNotAlmostEqual(first, second, places=None, msg=None, delta=None)
Fail if the two objects are equal as determined by their difference rounded to the given number of decimal
places (default 7) and comparing to zero, or by comparing that the between the two objects is less than the
given delta.

Note that decimal places (from zero) are usually not the same as significant digits (measured from the most
signficant digit).

Objects that are equal automatically fail.

assertNotEqual(first, second, msg=None)
Fail if the two objects are equal as determined by the ‘!=’ operator.

assertNotIn(member, container, msg=None)
Just like self.assertTrue(a not in b), but with a nicer default message.

assertNotIsInstance(obj, cls, msg=None)
Included for symmetry with assertIsInstance.

assertNotRegex(text, unexpected_regex, msg=None)
Fail the test if the text matches the regular expression.

assertNumBallsKnown(balls)
Assert that a certain number of balls are known in the machine.

assertRaises(expected_exception, *args, **kwargs)
Fail unless an exception of class expected_exception is raised by the callable when invoked with specified
positional and keyword arguments. If a different type of exception is raised, it will not be caught, and the
test case will be deemed to have suffered an error, exactly as for an unexpected exception.

If called with the callable and arguments omitted, will return a context object used like this:

with self.assertRaises(SomeException):
do_something()

An optional keyword argument ‘msg’ can be provided when assertRaises is used as a context object.

The context manager keeps a reference to the exception as the ‘exception’ attribute. This allows you to
inspect the exception after the assertion:

with self.assertRaises(SomeException) as cm:
do_something()

the_exception = cm.exception
self.assertEqual(the_exception.error_code, 3)

assertRaisesRegex(expected_exception, expected_regex, *args, **kwargs)
Asserts that the message in a raised exception matches a regex.

152 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

Parameters

• expected_exception – Exception class expected to be raised.

• expected_regex – Regex (re pattern object or string) expected to be found in error
message.

• args – Function to be called and extra positional args.

• kwargs – Extra kwargs.

• msg – Optional message used in case of failure. Can only be used when assertRaisesRegex
is used as a context manager.

assertRegex(text, expected_regex, msg=None)
Fail the test unless the text matches the regular expression.

assertSequenceEqual(seq1, seq2, msg=None, seq_type=None)
An equality assertion for ordered sequences (like lists and tuples).

For the purposes of this function, a valid ordered sequence type is one which can be indexed, has a length,
and has an equality operator.

Parameters

• seq1 – The first sequence to compare.

• seq2 – The second sequence to compare.

• seq_type – The expected datatype of the sequences, or None if no datatype should be
enforced.

• msg – Optional message to use on failure instead of a list of differences.

assertSetEqual(set1, set2, msg=None)
A set-specific equality assertion.

Parameters

• set1 – The first set to compare.

• set2 – The second set to compare.

• msg – Optional message to use on failure instead of a list of differences.

assertSetEqual uses ducktyping to support different types of sets, and is optimized for sets specifically
(parameters must support a difference method).

assertShotEnabled(shot_name)
Assert that a shot is enabled.

Parameters shot_name – String name of the shot.

assertShotProfile(shot_name, profile_name)
Assert that the highest priority profile for a shot is a certain profile name.

Parameters

• shot_name – String name of the shot.

• profile_name – String name of the profile.

assertShotProfileState(shot_name, state_name)
Assert that the highest priority profile for a shot is in a certain state.

Parameters

• shot_name – String name of the shot.

7.3. API Reference 153

MPF Documentation Developer Documentation, Release 0.50.22

• state_name – String name of the state.

assertShotShow(shot_name, show_name)
Assert that the highest priority running show for a shot is a certain show name.

Parameters

• shot_name – String name of the shot.

• show_name – String name of the show.

assertTrue(expr, msg=None)
Check that the expression is true.

assertTupleEqual(tuple1, tuple2, msg=None)
A tuple-specific equality assertion.

Parameters

• tuple1 – The first tuple to compare.

• tuple2 – The second tuple to compare.

• msg – Optional message to use on failure instead of a list of differences.

assertWarns(expected_warning, *args, **kwargs)
Fail unless a warning of class warnClass is triggered by the callable when invoked with specified positional
and keyword arguments. If a different type of warning is triggered, it will not be handled: depending on
the other warning filtering rules in effect, it might be silenced, printed out, or raised as an exception.

If called with the callable and arguments omitted, will return a context object used like this:

with self.assertWarns(SomeWarning):
do_something()

An optional keyword argument ‘msg’ can be provided when assertWarns is used as a context object.

The context manager keeps a reference to the first matching warning as the ‘warning’ attribute; similarly,
the ‘filename’ and ‘lineno’ attributes give you information about the line of Python code from which the
warning was triggered. This allows you to inspect the warning after the assertion:

with self.assertWarns(SomeWarning) as cm:
do_something()

the_warning = cm.warning
self.assertEqual(the_warning.some_attribute, 147)

assertWarnsRegex(expected_warning, expected_regex, *args, **kwargs)
Asserts that the message in a triggered warning matches a regexp. Basic functioning is similar to as-
sertWarns() with the addition that only warnings whose messages also match the regular expression are
considered successful matches.

Parameters

• expected_warning – Warning class expected to be triggered.

• expected_regex – Regex (re pattern object or string) expected to be found in error
message.

• args – Function to be called and extra positional args.

• kwargs – Extra kwargs.

• msg – Optional message used in case of failure. Can only be used when assertWarnsRegex
is used as a context manager.

154 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

fail(msg=None)
Fail immediately, with the given message.

getConfigFile()
Return a string name of the machine config file to use for the tests in this class.

You should override this method in your own test class to point to the config file you need for your tests.

Returns A string name of the machine config file to use, complete with the .yaml file exten-
sion.

For example:

def getConfigFile(self):
return 'my_config.yaml'

getMachinePath()
Return a string name of the path to the machine folder to use for the tests in this class.

You should override this method in your own test class to point to the machine folder root you need for
your tests.

Returns A string name of the machine path to use

For example:

def getMachinePath(self):
return 'tests/machine_files/my_test/'

Note that this path is relative to the MPF package root

get_enable_plugins()
Control whether tests in this class should load MPF plugins.

Returns: True or False

The default is False. To load plugins in your test class, add the following:

def get_enable_plugins(self):
return True

get_platform()
Force this test class to use a certain platform.

Returns String name of the platform this test class will use.

If you don’t include this method in your test class, the platform will be set to virtual. If you want to use
the smart virtual platform, you would add the following to your test class:

def get_platform(self):
return 'smart_virtual`

get_timer(timer)
Return a timer object from a mode based on a name.

Parameters timer – String name of the timer to look for.

Returns A Timer object.

Raises AssertionError if the timer does not exist. –

get_use_bcp()
Control whether tests in this class should use BCP.

7.3. API Reference 155

MPF Documentation Developer Documentation, Release 0.50.22

Returns: True or False

The default is False. To use BCP in your test class, add the following:

def get_use_bcp(self):
return True

hit_and_release_switch(name)
Momentarily activates and then deactivates a switch.

Parameters name – The name of the switch to hit.

This method immediately activates and deactivates a switch with no time in between.

hit_switch_and_run(name, delta)
Activates a switch and advances the time.

Parameters

• name – The name of the switch to activate.

• delta – The time (in seconds) to advance the clock.

Note that this method does not deactivate the switch once the time has been advanced, meaning the switch
stays active. To make the switch inactive, use the release_switch_and_run().

machine_run()
Process any delays, timers, or anything else scheduled.

Note this is the same as:

self.advance_time_and_run(0)

mock_event(event_name)
Configure an event to be mocked.

Parameters event_name – String name of the event to mock.

Mocking an event is an easy way to check if an event was called without configuring some kind of callback
action in your tests.

Note that an event must be mocked here before it’s posted in order for assertEventNotCalled()
and assertEventCalled() to work.

Mocking an event will not “break” it. In other words, any other registered handlers for this event will also
be called even if the event has been mocked.

For example:

self.mock_event('my_event')
self.assertEventNotCalled('my_event') # This will be True
self.post_event('my_event')
self.assertEventCalled('my_event') # This will also be True

post_event(event_name, run_time=0)
Post an MPF event and optionally advance the time.

Parameters

• event_name – String name of the event to post

• run_time – How much time (in seconds) the test should advance after this event has
been posted.

For example, to post an event called “shot1_hit”:

156 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

self.post_event('shot1_hit')

To post an event called “tilt” and then advance the time 1.5 seconds:

self.post_event('tilt', 1.5)

post_event_with_params(event_name, **params)
Post an MPF event with kwarg parameters.

Parameters

• event_name – String name of the event to post

• **params – One or more kwarg key/value pairs to post with the event.

For example, to post an event called “jackpot” with the parameters count=1 and first_time=True,
you would use:

self.post_event('jackpot', count=1, first_time=True)

release_switch_and_run(name, delta)
Deactivates a switch and advances the time.

Parameters

• name – The name of the switch to activate.

• delta – The time (in seconds) to advance the clock.

reset_mock_events()
Reset all mocked events.

This will reset the count of number of times called every mocked event is.

setUp()
Hook method for setting up the test fixture before exercising it.

set_num_balls_known(balls)
Set the ball controller’s num_balls_known attribute.

This is needed for tests where you don’t have any ball devices and other situations where you need the ball
controller to think the machine has a certain amount of balls to run a test.

Example:

self.set_num_balls_known(3)

shortDescription()
Returns a one-line description of the test, or None if no description has been provided.

The default implementation of this method returns the first line of the specified test method’s docstring.

skipTest(reason)
Skip this test.

start_mode(mode)
Start mode.

stop_mode(mode)
Stop mode.

tearDown()
Hook method for deconstructing the test fixture after testing it.

7.3. API Reference 157

MPF Documentation Developer Documentation, Release 0.50.22

unittest_verbosity()
Return the verbosity setting of the currently running unittest program, or 0 if none is running.

Returns: An integer value of the current verbosity setting.

MpfFakeGameTestCase

class mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase(methodName)
Bases: mpf.tests.MpfGameTestCase.MpfGameTestCase

Test case for a game that does not require ball devices & start switches.

Often times you need to write a test that is able to start a game. However in order to start a game, MPF requires
lots of things, like having proper ball devices and a start button and stuff like that.

This test overwrites the start_game() and drain_ball() methods of the MpfGameTestCase class so
that you can start games and drain balls without actually having any ball devices configured.

Methods & Attributes

The MpfFakeGameTestCase has the following methods & attributes available. Note that methods & attributes
inherited from the base class are not included here.

add_player()
Add a player to the current game.

This method hits and releases a switch called s_start and then verifies that the player count actually
increased by 1.

You can call this method multiple times to add multiple players. For example, to start a game and then add
2 additional players (for 3 players total), you would use:

self.start_game()
self.add_player()
self.add_player()

advance_time_and_run(delta=1.0)
Advance the test clock and run anything that should run during that time.

Parameters delta – How much time to advance the test clock by (in seconds)

This method will cause anything scheduled during the time to run, including things like delays, timers, etc.

Advancing the clock will happen in multiple small steps if things are scheduled to happen during this
advance. For example, you can advance the clock 10 seconds like this:

self.advance_time_and_run(10)

If there is a delay callback that is scheduled to happen in 2 seconds, then this method will advance the
clock 2 seconds, process that delay, and then advance the remaining 8 seconds.

assertAlmostEqual(first, second, places=None, msg=None, delta=None)
Fail if the two objects are unequal as determined by their difference rounded to the given number of decimal
places (default 7) and comparing to zero, or by comparing that the between the two objects is more than
the given delta.

Note that decimal places (from zero) are usually not the same as significant digits (measured from the most
signficant digit).

If the two objects compare equal then they will automatically compare almost equal.

158 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

assertBallNumber(number)
Asserts that the current ball is a certain ball numebr.

Parameters number – The number to check.

Raises

• Assertion error if there is no game in progress or if –

• the current ball is not the ball number passed. –

The following code will check to make sure the game is on Ball 1:

self.assertBallNumber(1)

assertBallsInPlay(balls)
Asserts that a certain number of balls are in play.

Note that the number of balls in play is not necessarily the same as the number of balls on the playfield.
(For example, a ball could be held in a ball device, or the machine could be in the process of adding a ball
to the platfield.)

Parameters balls – The number of balls you want to assert are in play.

To assert that there are 3 balls in play (perhaps during a multiball), you would use:

self.assertBallsInPlay(3)

assertColorAlmostEqual(color1, color2, delta=6)
Assert that two color are almost equal.

Parameters

• color1 – The first color, as an RGBColor instance or 3-item iterable.

• color2 – The second color, as an RGBColor instance or 3-item iterable.

• delta – How close the colors have to be. The deltas between red, green, and blue are
added together and must be less or equal to this value for this assertion to succeed.

assertCountEqual(first, second, msg=None)
An unordered sequence comparison asserting that the same elements, regardless of order. If the same
element occurs more than once, it verifies that the elements occur the same number of times.

self.assertEqual(Counter(list(first)), Counter(list(second)))

Example:

• [0, 1, 1] and [1, 0, 1] compare equal.

• [0, 0, 1] and [0, 1] compare unequal.

assertDictContainsSubset(subset, dictionary, msg=None)
Checks whether dictionary is a superset of subset.

assertEqual(first, second, msg=None)
Fail if the two objects are unequal as determined by the ‘==’ operator.

assertEventCalled(event_name, times=None)
Assert that event was called.

Parameters

• event_name – String name of the event to check.

7.3. API Reference 159

MPF Documentation Developer Documentation, Release 0.50.22

• times – An optional value to confirm the number of times the event was called. Default
of None means this method will pass as long as the event has been called at least once.

If you want to reset the times count, you can mock the event again.

Note that the event must be mocked via self.mock_event() first in order to use this method.

For example:

self.mock_event('my_event')
self.assertEventNotCalled('my_event') # This will pass

self.post_event('my_event')
self.assertEventCalled('my_event') # This will pass
self.assertEventCalled('my_event', 1) # This will pass

self.post_event('my_event')
self.assertEventCalled('my_event') # This will pass
self.assertEventCalled('my_event', 2) # This will pass

assertEventCalledWith(event_name, **kwargs)
Assert an event was called with certain kwargs.

Parameters

• event_name – String name of the event to check.

• **kwargs – Name/value parameters to check.

For example:

self.mock_event('jackpot')

self.post_event('jackpot', count=1, first_time=True)
self.assertEventCalled('jackpot') # This will pass
self.assertEventCalledWith('jackpot', count=1, first_time=True) # This will
→˓also pass
self.assertEventCalledWith('jackpot', count=1, first_time=False) # This will
→˓fail

assertEventNotCalled(event_name)
Assert that event was not called.

Parameters event_name – String name of the event to check.

Note that the event must be mocked via self.mock_event() first in order to use this method.

assertFalse(expr, msg=None)
Check that the expression is false.

assertGameIsNotRunning()
Assert a game is not running.

Example:

self.assertGameIsNotRunning()

assertGameIsRunning()
Assert a game is running.

Example:

160 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

self.assertGameIsRunning()

assertGreater(a, b, msg=None)
Just like self.assertTrue(a > b), but with a nicer default message.

assertGreaterEqual(a, b, msg=None)
Just like self.assertTrue(a >= b), but with a nicer default message.

assertIn(member, container, msg=None)
Just like self.assertTrue(a in b), but with a nicer default message.

assertIs(expr1, expr2, msg=None)
Just like self.assertTrue(a is b), but with a nicer default message.

assertIsInstance(obj, cls, msg=None)
Same as self.assertTrue(isinstance(obj, cls)), with a nicer default message.

assertIsNone(obj, msg=None)
Same as self.assertTrue(obj is None), with a nicer default message.

assertIsNot(expr1, expr2, msg=None)
Just like self.assertTrue(a is not b), but with a nicer default message.

assertIsNotNone(obj, msg=None)
Included for symmetry with assertIsNone.

assertLess(a, b, msg=None)
Just like self.assertTrue(a < b), but with a nicer default message.

assertLessEqual(a, b, msg=None)
Just like self.assertTrue(a <= b), but with a nicer default message.

assertListEqual(list1, list2, msg=None)
A list-specific equality assertion.

Parameters

• list1 – The first list to compare.

• list2 – The second list to compare.

• msg – Optional message to use on failure instead of a list of differences.

assertLogs(logger=None, level=None)
Fail unless a log message of level level or higher is emitted on logger_name or its children. If omitted,
level defaults to INFO and logger defaults to the root logger.

This method must be used as a context manager, and will yield a recording object with two attributes:
output and records. At the end of the context manager, the output attribute will be a list of the matching
formatted log messages and the records attribute will be a list of the corresponding LogRecord objects.

Example:

with self.assertLogs('foo', level='INFO') as cm:
logging.getLogger('foo').info('first message')
logging.getLogger('foo.bar').error('second message')

self.assertEqual(cm.output, ['INFO:foo:first message',
'ERROR:foo.bar:second message'])

assertMultiLineEqual(first, second, msg=None)
Assert that two multi-line strings are equal.

7.3. API Reference 161

MPF Documentation Developer Documentation, Release 0.50.22

assertNotAlmostEqual(first, second, places=None, msg=None, delta=None)
Fail if the two objects are equal as determined by their difference rounded to the given number of decimal
places (default 7) and comparing to zero, or by comparing that the between the two objects is less than the
given delta.

Note that decimal places (from zero) are usually not the same as significant digits (measured from the most
signficant digit).

Objects that are equal automatically fail.

assertNotEqual(first, second, msg=None)
Fail if the two objects are equal as determined by the ‘!=’ operator.

assertNotIn(member, container, msg=None)
Just like self.assertTrue(a not in b), but with a nicer default message.

assertNotIsInstance(obj, cls, msg=None)
Included for symmetry with assertIsInstance.

assertNotRegex(text, unexpected_regex, msg=None)
Fail the test if the text matches the regular expression.

assertNumBallsKnown(balls)
Assert that a certain number of balls are known in the machine.

assertPlayerNumber(number)
Asserts that the current player is a certain player number.

Parameters number – The player number you can to assert is the current player.

For example, to assert that the current player is Player 2, you would use:

self.assertPlayerNumber(2)

assertRaises(expected_exception, *args, **kwargs)
Fail unless an exception of class expected_exception is raised by the callable when invoked with specified
positional and keyword arguments. If a different type of exception is raised, it will not be caught, and the
test case will be deemed to have suffered an error, exactly as for an unexpected exception.

If called with the callable and arguments omitted, will return a context object used like this:

with self.assertRaises(SomeException):
do_something()

An optional keyword argument ‘msg’ can be provided when assertRaises is used as a context object.

The context manager keeps a reference to the exception as the ‘exception’ attribute. This allows you to
inspect the exception after the assertion:

with self.assertRaises(SomeException) as cm:
do_something()

the_exception = cm.exception
self.assertEqual(the_exception.error_code, 3)

assertRaisesRegex(expected_exception, expected_regex, *args, **kwargs)
Asserts that the message in a raised exception matches a regex.

Parameters

• expected_exception – Exception class expected to be raised.

• expected_regex – Regex (re pattern object or string) expected to be found in error
message.

162 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

• args – Function to be called and extra positional args.

• kwargs – Extra kwargs.

• msg – Optional message used in case of failure. Can only be used when assertRaisesRegex
is used as a context manager.

assertRegex(text, expected_regex, msg=None)
Fail the test unless the text matches the regular expression.

assertSequenceEqual(seq1, seq2, msg=None, seq_type=None)
An equality assertion for ordered sequences (like lists and tuples).

For the purposes of this function, a valid ordered sequence type is one which can be indexed, has a length,
and has an equality operator.

Parameters

• seq1 – The first sequence to compare.

• seq2 – The second sequence to compare.

• seq_type – The expected datatype of the sequences, or None if no datatype should be
enforced.

• msg – Optional message to use on failure instead of a list of differences.

assertSetEqual(set1, set2, msg=None)
A set-specific equality assertion.

Parameters

• set1 – The first set to compare.

• set2 – The second set to compare.

• msg – Optional message to use on failure instead of a list of differences.

assertSetEqual uses ducktyping to support different types of sets, and is optimized for sets specifically
(parameters must support a difference method).

assertShotEnabled(shot_name)
Assert that a shot is enabled.

Parameters shot_name – String name of the shot.

assertShotProfile(shot_name, profile_name)
Assert that the highest priority profile for a shot is a certain profile name.

Parameters

• shot_name – String name of the shot.

• profile_name – String name of the profile.

assertShotProfileState(shot_name, state_name)
Assert that the highest priority profile for a shot is in a certain state.

Parameters

• shot_name – String name of the shot.

• state_name – String name of the state.

assertShotShow(shot_name, show_name)
Assert that the highest priority running show for a shot is a certain show name.

Parameters

7.3. API Reference 163

MPF Documentation Developer Documentation, Release 0.50.22

• shot_name – String name of the shot.

• show_name – String name of the show.

assertTrue(expr, msg=None)
Check that the expression is true.

assertTupleEqual(tuple1, tuple2, msg=None)
A tuple-specific equality assertion.

Parameters

• tuple1 – The first tuple to compare.

• tuple2 – The second tuple to compare.

• msg – Optional message to use on failure instead of a list of differences.

assertWarns(expected_warning, *args, **kwargs)
Fail unless a warning of class warnClass is triggered by the callable when invoked with specified positional
and keyword arguments. If a different type of warning is triggered, it will not be handled: depending on
the other warning filtering rules in effect, it might be silenced, printed out, or raised as an exception.

If called with the callable and arguments omitted, will return a context object used like this:

with self.assertWarns(SomeWarning):
do_something()

An optional keyword argument ‘msg’ can be provided when assertWarns is used as a context object.

The context manager keeps a reference to the first matching warning as the ‘warning’ attribute; similarly,
the ‘filename’ and ‘lineno’ attributes give you information about the line of Python code from which the
warning was triggered. This allows you to inspect the warning after the assertion:

with self.assertWarns(SomeWarning) as cm:
do_something()

the_warning = cm.warning
self.assertEqual(the_warning.some_attribute, 147)

assertWarnsRegex(expected_warning, expected_regex, *args, **kwargs)
Asserts that the message in a triggered warning matches a regexp. Basic functioning is similar to as-
sertWarns() with the addition that only warnings whose messages also match the regular expression are
considered successful matches.

Parameters

• expected_warning – Warning class expected to be triggered.

• expected_regex – Regex (re pattern object or string) expected to be found in error
message.

• args – Function to be called and extra positional args.

• kwargs – Extra kwargs.

• msg – Optional message used in case of failure. Can only be used when assertWarnsRegex
is used as a context manager.

drain_ball()
Drain all the balls in play.

Does not actually require any ball devices to be present in the config file.

164 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

fail(msg=None)
Fail immediately, with the given message.

fill_troughs()
Fill all ball devices tagged with trough with balls.

getConfigFile()
Return a string name of the machine config file to use for the tests in this class.

You should override this method in your own test class to point to the config file you need for your tests.

Returns A string name of the machine config file to use, complete with the .yaml file exten-
sion.

For example:

def getConfigFile(self):
return 'my_config.yaml'

getMachinePath()
Return a string name of the path to the machine folder to use for the tests in this class.

You should override this method in your own test class to point to the machine folder root you need for
your tests.

Returns A string name of the machine path to use

For example:

def getMachinePath(self):
return 'tests/machine_files/my_test/'

Note that this path is relative to the MPF package root

get_enable_plugins()
Control whether tests in this class should load MPF plugins.

Returns: True or False

The default is False. To load plugins in your test class, add the following:

def get_enable_plugins(self):
return True

get_platform()
Force this test class to use a certain platform.

Returns String name of the platform this test class will use.

If you don’t include this method in your test class, the platform will be set to virtual. If you want to use
the smart virtual platform, you would add the following to your test class:

def get_platform(self):
return 'smart_virtual`

get_timer(timer)
Return a timer object from a mode based on a name.

Parameters timer – String name of the timer to look for.

Returns A Timer object.

Raises AssertionError if the timer does not exist. –

7.3. API Reference 165

MPF Documentation Developer Documentation, Release 0.50.22

get_use_bcp()
Control whether tests in this class should use BCP.

Returns: True or False

The default is False. To use BCP in your test class, add the following:

def get_use_bcp(self):
return True

hit_and_release_switch(name)
Momentarily activates and then deactivates a switch.

Parameters name – The name of the switch to hit.

This method immediately activates and deactivates a switch with no time in between.

hit_switch_and_run(name, delta)
Activates a switch and advances the time.

Parameters

• name – The name of the switch to activate.

• delta – The time (in seconds) to advance the clock.

Note that this method does not deactivate the switch once the time has been advanced, meaning the switch
stays active. To make the switch inactive, use the release_switch_and_run().

machine_run()
Process any delays, timers, or anything else scheduled.

Note this is the same as:

self.advance_time_and_run(0)

mock_event(event_name)
Configure an event to be mocked.

Parameters event_name – String name of the event to mock.

Mocking an event is an easy way to check if an event was called without configuring some kind of callback
action in your tests.

Note that an event must be mocked here before it’s posted in order for assertEventNotCalled()
and assertEventCalled() to work.

Mocking an event will not “break” it. In other words, any other registered handlers for this event will also
be called even if the event has been mocked.

For example:

self.mock_event('my_event')
self.assertEventNotCalled('my_event') # This will be True
self.post_event('my_event')
self.assertEventCalled('my_event') # This will also be True

post_event(event_name, run_time=0)
Post an MPF event and optionally advance the time.

Parameters

• event_name – String name of the event to post

166 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

• run_time – How much time (in seconds) the test should advance after this event has
been posted.

For example, to post an event called “shot1_hit”:

self.post_event('shot1_hit')

To post an event called “tilt” and then advance the time 1.5 seconds:

self.post_event('tilt', 1.5)

post_event_with_params(event_name, **params)
Post an MPF event with kwarg parameters.

Parameters

• event_name – String name of the event to post

• **params – One or more kwarg key/value pairs to post with the event.

For example, to post an event called “jackpot” with the parameters count=1 and first_time=True,
you would use:

self.post_event('jackpot', count=1, first_time=True)

release_switch_and_run(name, delta)
Deactivates a switch and advances the time.

Parameters

• name – The name of the switch to activate.

• delta – The time (in seconds) to advance the clock.

reset_mock_events()
Reset all mocked events.

This will reset the count of number of times called every mocked event is.

setUp()
Hook method for setting up the test fixture before exercising it.

set_num_balls_known(balls)
Set the ball controller’s num_balls_known attribute.

This is needed for tests where you don’t have any ball devices and other situations where you need the ball
controller to think the machine has a certain amount of balls to run a test.

Example:

self.set_num_balls_known(3)

shortDescription()
Returns a one-line description of the test, or None if no description has been provided.

The default implementation of this method returns the first line of the specified test method’s docstring.

skipTest(reason)
Skip this test.

start_game()
Start a game.

7.3. API Reference 167

MPF Documentation Developer Documentation, Release 0.50.22

Does not require ball devices or a start button to be present in the config file. Sets the number of known
balls to 3.

start_mode(mode)
Start mode.

start_two_player_game()
Start two player game.

stop_game()
Stop the current game.

This method asserts that a game is running, then call’s the game mode’s end_game() method, then
asserts that the game has successfully stopped.

Example:

self.stop_game()

stop_mode(mode)
Stop mode.

tearDown()
Hook method for deconstructing the test fixture after testing it.

unittest_verbosity()
Return the verbosity setting of the currently running unittest program, or 0 if none is running.

Returns: An integer value of the current verbosity setting.

MpfGameTestCase

class mpf.tests.MpfGameTestCase.MpfGameTestCase(methodName)
Bases: mpf.tests.MpfTestCase.MpfTestCase

Test case for starting and running games.

This is based on MpfTestCase but adds methods and assertions related to running games (rather than just
testing MPF components or devices).

Methods & Attributes

The MpfGameTestCase has the following methods & attributes available. Note that methods & attributes inher-
ited from the base class are not included here.

add_player()
Add a player to the current game.

This method hits and releases a switch called s_start and then verifies that the player count actually
increased by 1.

You can call this method multiple times to add multiple players. For example, to start a game and then add
2 additional players (for 3 players total), you would use:

self.start_game()
self.add_player()
self.add_player()

advance_time_and_run(delta=1.0)
Advance the test clock and run anything that should run during that time.

168 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

Parameters delta – How much time to advance the test clock by (in seconds)

This method will cause anything scheduled during the time to run, including things like delays, timers, etc.

Advancing the clock will happen in multiple small steps if things are scheduled to happen during this
advance. For example, you can advance the clock 10 seconds like this:

self.advance_time_and_run(10)

If there is a delay callback that is scheduled to happen in 2 seconds, then this method will advance the
clock 2 seconds, process that delay, and then advance the remaining 8 seconds.

assertAlmostEqual(first, second, places=None, msg=None, delta=None)
Fail if the two objects are unequal as determined by their difference rounded to the given number of decimal
places (default 7) and comparing to zero, or by comparing that the between the two objects is more than
the given delta.

Note that decimal places (from zero) are usually not the same as significant digits (measured from the most
signficant digit).

If the two objects compare equal then they will automatically compare almost equal.

assertBallNumber(number)
Asserts that the current ball is a certain ball numebr.

Parameters number – The number to check.

Raises

• Assertion error if there is no game in progress or if –

• the current ball is not the ball number passed. –

The following code will check to make sure the game is on Ball 1:

self.assertBallNumber(1)

assertBallsInPlay(balls)
Asserts that a certain number of balls are in play.

Note that the number of balls in play is not necessarily the same as the number of balls on the playfield.
(For example, a ball could be held in a ball device, or the machine could be in the process of adding a ball
to the platfield.)

Parameters balls – The number of balls you want to assert are in play.

To assert that there are 3 balls in play (perhaps during a multiball), you would use:

self.assertBallsInPlay(3)

assertColorAlmostEqual(color1, color2, delta=6)
Assert that two color are almost equal.

Parameters

• color1 – The first color, as an RGBColor instance or 3-item iterable.

• color2 – The second color, as an RGBColor instance or 3-item iterable.

• delta – How close the colors have to be. The deltas between red, green, and blue are
added together and must be less or equal to this value for this assertion to succeed.

7.3. API Reference 169

MPF Documentation Developer Documentation, Release 0.50.22

assertCountEqual(first, second, msg=None)
An unordered sequence comparison asserting that the same elements, regardless of order. If the same
element occurs more than once, it verifies that the elements occur the same number of times.

self.assertEqual(Counter(list(first)), Counter(list(second)))

Example:

• [0, 1, 1] and [1, 0, 1] compare equal.

• [0, 0, 1] and [0, 1] compare unequal.

assertDictContainsSubset(subset, dictionary, msg=None)
Checks whether dictionary is a superset of subset.

assertEqual(first, second, msg=None)
Fail if the two objects are unequal as determined by the ‘==’ operator.

assertEventCalled(event_name, times=None)
Assert that event was called.

Parameters

• event_name – String name of the event to check.

• times – An optional value to confirm the number of times the event was called. Default
of None means this method will pass as long as the event has been called at least once.

If you want to reset the times count, you can mock the event again.

Note that the event must be mocked via self.mock_event() first in order to use this method.

For example:

self.mock_event('my_event')
self.assertEventNotCalled('my_event') # This will pass

self.post_event('my_event')
self.assertEventCalled('my_event') # This will pass
self.assertEventCalled('my_event', 1) # This will pass

self.post_event('my_event')
self.assertEventCalled('my_event') # This will pass
self.assertEventCalled('my_event', 2) # This will pass

assertEventCalledWith(event_name, **kwargs)
Assert an event was called with certain kwargs.

Parameters

• event_name – String name of the event to check.

• **kwargs – Name/value parameters to check.

For example:

self.mock_event('jackpot')

self.post_event('jackpot', count=1, first_time=True)
self.assertEventCalled('jackpot') # This will pass

(continues on next page)

170 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

(continued from previous page)

self.assertEventCalledWith('jackpot', count=1, first_time=True) # This will
→˓also pass
self.assertEventCalledWith('jackpot', count=1, first_time=False) # This will
→˓fail

assertEventNotCalled(event_name)
Assert that event was not called.

Parameters event_name – String name of the event to check.

Note that the event must be mocked via self.mock_event() first in order to use this method.

assertFalse(expr, msg=None)
Check that the expression is false.

assertGameIsNotRunning()
Assert a game is not running.

Example:

self.assertGameIsNotRunning()

assertGameIsRunning()
Assert a game is running.

Example:

self.assertGameIsRunning()

assertGreater(a, b, msg=None)
Just like self.assertTrue(a > b), but with a nicer default message.

assertGreaterEqual(a, b, msg=None)
Just like self.assertTrue(a >= b), but with a nicer default message.

assertIn(member, container, msg=None)
Just like self.assertTrue(a in b), but with a nicer default message.

assertIs(expr1, expr2, msg=None)
Just like self.assertTrue(a is b), but with a nicer default message.

assertIsInstance(obj, cls, msg=None)
Same as self.assertTrue(isinstance(obj, cls)), with a nicer default message.

assertIsNone(obj, msg=None)
Same as self.assertTrue(obj is None), with a nicer default message.

assertIsNot(expr1, expr2, msg=None)
Just like self.assertTrue(a is not b), but with a nicer default message.

assertIsNotNone(obj, msg=None)
Included for symmetry with assertIsNone.

assertLess(a, b, msg=None)
Just like self.assertTrue(a < b), but with a nicer default message.

assertLessEqual(a, b, msg=None)
Just like self.assertTrue(a <= b), but with a nicer default message.

assertListEqual(list1, list2, msg=None)
A list-specific equality assertion.

7.3. API Reference 171

MPF Documentation Developer Documentation, Release 0.50.22

Parameters

• list1 – The first list to compare.

• list2 – The second list to compare.

• msg – Optional message to use on failure instead of a list of differences.

assertLogs(logger=None, level=None)
Fail unless a log message of level level or higher is emitted on logger_name or its children. If omitted,
level defaults to INFO and logger defaults to the root logger.

This method must be used as a context manager, and will yield a recording object with two attributes:
output and records. At the end of the context manager, the output attribute will be a list of the matching
formatted log messages and the records attribute will be a list of the corresponding LogRecord objects.

Example:

with self.assertLogs('foo', level='INFO') as cm:
logging.getLogger('foo').info('first message')
logging.getLogger('foo.bar').error('second message')

self.assertEqual(cm.output, ['INFO:foo:first message',
'ERROR:foo.bar:second message'])

assertMultiLineEqual(first, second, msg=None)
Assert that two multi-line strings are equal.

assertNotAlmostEqual(first, second, places=None, msg=None, delta=None)
Fail if the two objects are equal as determined by their difference rounded to the given number of decimal
places (default 7) and comparing to zero, or by comparing that the between the two objects is less than the
given delta.

Note that decimal places (from zero) are usually not the same as significant digits (measured from the most
signficant digit).

Objects that are equal automatically fail.

assertNotEqual(first, second, msg=None)
Fail if the two objects are equal as determined by the ‘!=’ operator.

assertNotIn(member, container, msg=None)
Just like self.assertTrue(a not in b), but with a nicer default message.

assertNotIsInstance(obj, cls, msg=None)
Included for symmetry with assertIsInstance.

assertNotRegex(text, unexpected_regex, msg=None)
Fail the test if the text matches the regular expression.

assertNumBallsKnown(balls)
Assert that a certain number of balls are known in the machine.

assertPlayerNumber(number)
Asserts that the current player is a certain player number.

Parameters number – The player number you can to assert is the current player.

For example, to assert that the current player is Player 2, you would use:

self.assertPlayerNumber(2)

assertRaises(expected_exception, *args, **kwargs)
Fail unless an exception of class expected_exception is raised by the callable when invoked with specified

172 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

positional and keyword arguments. If a different type of exception is raised, it will not be caught, and the
test case will be deemed to have suffered an error, exactly as for an unexpected exception.

If called with the callable and arguments omitted, will return a context object used like this:

with self.assertRaises(SomeException):
do_something()

An optional keyword argument ‘msg’ can be provided when assertRaises is used as a context object.

The context manager keeps a reference to the exception as the ‘exception’ attribute. This allows you to
inspect the exception after the assertion:

with self.assertRaises(SomeException) as cm:
do_something()

the_exception = cm.exception
self.assertEqual(the_exception.error_code, 3)

assertRaisesRegex(expected_exception, expected_regex, *args, **kwargs)
Asserts that the message in a raised exception matches a regex.

Parameters

• expected_exception – Exception class expected to be raised.

• expected_regex – Regex (re pattern object or string) expected to be found in error
message.

• args – Function to be called and extra positional args.

• kwargs – Extra kwargs.

• msg – Optional message used in case of failure. Can only be used when assertRaisesRegex
is used as a context manager.

assertRegex(text, expected_regex, msg=None)
Fail the test unless the text matches the regular expression.

assertSequenceEqual(seq1, seq2, msg=None, seq_type=None)
An equality assertion for ordered sequences (like lists and tuples).

For the purposes of this function, a valid ordered sequence type is one which can be indexed, has a length,
and has an equality operator.

Parameters

• seq1 – The first sequence to compare.

• seq2 – The second sequence to compare.

• seq_type – The expected datatype of the sequences, or None if no datatype should be
enforced.

• msg – Optional message to use on failure instead of a list of differences.

assertSetEqual(set1, set2, msg=None)
A set-specific equality assertion.

Parameters

• set1 – The first set to compare.

• set2 – The second set to compare.

• msg – Optional message to use on failure instead of a list of differences.

7.3. API Reference 173

MPF Documentation Developer Documentation, Release 0.50.22

assertSetEqual uses ducktyping to support different types of sets, and is optimized for sets specifically
(parameters must support a difference method).

assertShotEnabled(shot_name)
Assert that a shot is enabled.

Parameters shot_name – String name of the shot.

assertShotProfile(shot_name, profile_name)
Assert that the highest priority profile for a shot is a certain profile name.

Parameters

• shot_name – String name of the shot.

• profile_name – String name of the profile.

assertShotProfileState(shot_name, state_name)
Assert that the highest priority profile for a shot is in a certain state.

Parameters

• shot_name – String name of the shot.

• state_name – String name of the state.

assertShotShow(shot_name, show_name)
Assert that the highest priority running show for a shot is a certain show name.

Parameters

• shot_name – String name of the shot.

• show_name – String name of the show.

assertTrue(expr, msg=None)
Check that the expression is true.

assertTupleEqual(tuple1, tuple2, msg=None)
A tuple-specific equality assertion.

Parameters

• tuple1 – The first tuple to compare.

• tuple2 – The second tuple to compare.

• msg – Optional message to use on failure instead of a list of differences.

assertWarns(expected_warning, *args, **kwargs)
Fail unless a warning of class warnClass is triggered by the callable when invoked with specified positional
and keyword arguments. If a different type of warning is triggered, it will not be handled: depending on
the other warning filtering rules in effect, it might be silenced, printed out, or raised as an exception.

If called with the callable and arguments omitted, will return a context object used like this:

with self.assertWarns(SomeWarning):
do_something()

An optional keyword argument ‘msg’ can be provided when assertWarns is used as a context object.

The context manager keeps a reference to the first matching warning as the ‘warning’ attribute; similarly,
the ‘filename’ and ‘lineno’ attributes give you information about the line of Python code from which the
warning was triggered. This allows you to inspect the warning after the assertion:

174 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

with self.assertWarns(SomeWarning) as cm:
do_something()

the_warning = cm.warning
self.assertEqual(the_warning.some_attribute, 147)

assertWarnsRegex(expected_warning, expected_regex, *args, **kwargs)
Asserts that the message in a triggered warning matches a regexp. Basic functioning is similar to as-
sertWarns() with the addition that only warnings whose messages also match the regular expression are
considered successful matches.

Parameters

• expected_warning – Warning class expected to be triggered.

• expected_regex – Regex (re pattern object or string) expected to be found in error
message.

• args – Function to be called and extra positional args.

• kwargs – Extra kwargs.

• msg – Optional message used in case of failure. Can only be used when assertWarnsRegex
is used as a context manager.

drain_ball()
Drain a single ball.

If more than 1 ball is in play, this method will need to be called once for each ball in order to end the
current ball.

For example, if you have a three-ball multiball and you want to drain all the balls (and end the ball), you
would use:

self.drain_ball()
self.drain_ball()
self.drain_ball()

fail(msg=None)
Fail immediately, with the given message.

fill_troughs()
Fill all ball devices tagged with trough with balls.

getConfigFile()
Return a string name of the machine config file to use for the tests in this class.

You should override this method in your own test class to point to the config file you need for your tests.

Returns A string name of the machine config file to use, complete with the .yaml file exten-
sion.

For example:

def getConfigFile(self):
return 'my_config.yaml'

getMachinePath()
Return a string name of the path to the machine folder to use for the tests in this class.

You should override this method in your own test class to point to the machine folder root you need for
your tests.

7.3. API Reference 175

MPF Documentation Developer Documentation, Release 0.50.22

Returns A string name of the machine path to use

For example:

def getMachinePath(self):
return 'tests/machine_files/my_test/'

Note that this path is relative to the MPF package root

get_enable_plugins()
Control whether tests in this class should load MPF plugins.

Returns: True or False

The default is False. To load plugins in your test class, add the following:

def get_enable_plugins(self):
return True

get_platform()
Force this test class to use a certain platform.

Returns String name of the platform this test class will use.

If you don’t include this method in your test class, the platform will be set to virtual. If you want to use
the smart virtual platform, you would add the following to your test class:

def get_platform(self):
return 'smart_virtual`

get_timer(timer)
Return a timer object from a mode based on a name.

Parameters timer – String name of the timer to look for.

Returns A Timer object.

Raises AssertionError if the timer does not exist. –

get_use_bcp()
Control whether tests in this class should use BCP.

Returns: True or False

The default is False. To use BCP in your test class, add the following:

def get_use_bcp(self):
return True

hit_and_release_switch(name)
Momentarily activates and then deactivates a switch.

Parameters name – The name of the switch to hit.

This method immediately activates and deactivates a switch with no time in between.

hit_switch_and_run(name, delta)
Activates a switch and advances the time.

Parameters

• name – The name of the switch to activate.

• delta – The time (in seconds) to advance the clock.

176 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

Note that this method does not deactivate the switch once the time has been advanced, meaning the switch
stays active. To make the switch inactive, use the release_switch_and_run().

machine_run()
Process any delays, timers, or anything else scheduled.

Note this is the same as:

self.advance_time_and_run(0)

mock_event(event_name)
Configure an event to be mocked.

Parameters event_name – String name of the event to mock.

Mocking an event is an easy way to check if an event was called without configuring some kind of callback
action in your tests.

Note that an event must be mocked here before it’s posted in order for assertEventNotCalled()
and assertEventCalled() to work.

Mocking an event will not “break” it. In other words, any other registered handlers for this event will also
be called even if the event has been mocked.

For example:

self.mock_event('my_event')
self.assertEventNotCalled('my_event') # This will be True
self.post_event('my_event')
self.assertEventCalled('my_event') # This will also be True

post_event(event_name, run_time=0)
Post an MPF event and optionally advance the time.

Parameters

• event_name – String name of the event to post

• run_time – How much time (in seconds) the test should advance after this event has
been posted.

For example, to post an event called “shot1_hit”:

self.post_event('shot1_hit')

To post an event called “tilt” and then advance the time 1.5 seconds:

self.post_event('tilt', 1.5)

post_event_with_params(event_name, **params)
Post an MPF event with kwarg parameters.

Parameters

• event_name – String name of the event to post

• **params – One or more kwarg key/value pairs to post with the event.

For example, to post an event called “jackpot” with the parameters count=1 and first_time=True,
you would use:

self.post_event('jackpot', count=1, first_time=True)

7.3. API Reference 177

MPF Documentation Developer Documentation, Release 0.50.22

release_switch_and_run(name, delta)
Deactivates a switch and advances the time.

Parameters

• name – The name of the switch to activate.

• delta – The time (in seconds) to advance the clock.

reset_mock_events()
Reset all mocked events.

This will reset the count of number of times called every mocked event is.

setUp()
Hook method for setting up the test fixture before exercising it.

set_num_balls_known(balls)
Set the ball controller’s num_balls_known attribute.

This is needed for tests where you don’t have any ball devices and other situations where you need the ball
controller to think the machine has a certain amount of balls to run a test.

Example:

self.set_num_balls_known(3)

shortDescription()
Returns a one-line description of the test, or None if no description has been provided.

The default implementation of this method returns the first line of the specified test method’s docstring.

skipTest(reason)
Skip this test.

start_game()
Start a game.

This method checks to make sure a game is not running, then hits and releases the s_start switch, and
finally checks to make sure a game actually started properly.

For example:

self.start_game()

start_mode(mode)
Start mode.

start_two_player_game()
Start two player game.

stop_game()
Stop the current game.

This method asserts that a game is running, then call’s the game mode’s end_game() method, then
asserts that the game has successfully stopped.

Example:

self.stop_game()

stop_mode(mode)
Stop mode.

178 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

tearDown()
Hook method for deconstructing the test fixture after testing it.

unittest_verbosity()
Return the verbosity setting of the currently running unittest program, or 0 if none is running.

Returns: An integer value of the current verbosity setting.

MpfMachineTestCase

class mpf.tests.MpfMachineTestCase.MpfMachineTestCase(methodName=’runTest’)
Bases: mpf.tests.MpfMachineTestCase.BaseMpfMachineTestCase

MPF only machine test case.

Methods & Attributes

The MpfMachineTestCase has the following methods & attributes available. Note that methods & attributes
inherited from the base class are not included here.

advance_time_and_run(delta=1.0)
Advance the test clock and run anything that should run during that time.

Parameters delta – How much time to advance the test clock by (in seconds)

This method will cause anything scheduled during the time to run, including things like delays, timers, etc.

Advancing the clock will happen in multiple small steps if things are scheduled to happen during this
advance. For example, you can advance the clock 10 seconds like this:

self.advance_time_and_run(10)

If there is a delay callback that is scheduled to happen in 2 seconds, then this method will advance the
clock 2 seconds, process that delay, and then advance the remaining 8 seconds.

assertAlmostEqual(first, second, places=None, msg=None, delta=None)
Fail if the two objects are unequal as determined by their difference rounded to the given number of decimal
places (default 7) and comparing to zero, or by comparing that the between the two objects is more than
the given delta.

Note that decimal places (from zero) are usually not the same as significant digits (measured from the most
signficant digit).

If the two objects compare equal then they will automatically compare almost equal.

assertColorAlmostEqual(color1, color2, delta=6)
Assert that two color are almost equal.

Parameters

• color1 – The first color, as an RGBColor instance or 3-item iterable.

• color2 – The second color, as an RGBColor instance or 3-item iterable.

• delta – How close the colors have to be. The deltas between red, green, and blue are
added together and must be less or equal to this value for this assertion to succeed.

assertCountEqual(first, second, msg=None)
An unordered sequence comparison asserting that the same elements, regardless of order. If the same
element occurs more than once, it verifies that the elements occur the same number of times.

7.3. API Reference 179

MPF Documentation Developer Documentation, Release 0.50.22

self.assertEqual(Counter(list(first)), Counter(list(second)))

Example:

• [0, 1, 1] and [1, 0, 1] compare equal.

• [0, 0, 1] and [0, 1] compare unequal.

assertDictContainsSubset(subset, dictionary, msg=None)
Checks whether dictionary is a superset of subset.

assertEqual(first, second, msg=None)
Fail if the two objects are unequal as determined by the ‘==’ operator.

assertEventCalled(event_name, times=None)
Assert that event was called.

Parameters

• event_name – String name of the event to check.

• times – An optional value to confirm the number of times the event was called. Default
of None means this method will pass as long as the event has been called at least once.

If you want to reset the times count, you can mock the event again.

Note that the event must be mocked via self.mock_event() first in order to use this method.

For example:

self.mock_event('my_event')
self.assertEventNotCalled('my_event') # This will pass

self.post_event('my_event')
self.assertEventCalled('my_event') # This will pass
self.assertEventCalled('my_event', 1) # This will pass

self.post_event('my_event')
self.assertEventCalled('my_event') # This will pass
self.assertEventCalled('my_event', 2) # This will pass

assertEventCalledWith(event_name, **kwargs)
Assert an event was called with certain kwargs.

Parameters

• event_name – String name of the event to check.

• **kwargs – Name/value parameters to check.

For example:

self.mock_event('jackpot')

self.post_event('jackpot', count=1, first_time=True)
self.assertEventCalled('jackpot') # This will pass
self.assertEventCalledWith('jackpot', count=1, first_time=True) # This will
→˓also pass
self.assertEventCalledWith('jackpot', count=1, first_time=False) # This will
→˓fail

assertEventNotCalled(event_name)
Assert that event was not called.

180 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

Parameters event_name – String name of the event to check.

Note that the event must be mocked via self.mock_event() first in order to use this method.

assertFalse(expr, msg=None)
Check that the expression is false.

assertGreater(a, b, msg=None)
Just like self.assertTrue(a > b), but with a nicer default message.

assertGreaterEqual(a, b, msg=None)
Just like self.assertTrue(a >= b), but with a nicer default message.

assertIn(member, container, msg=None)
Just like self.assertTrue(a in b), but with a nicer default message.

assertIs(expr1, expr2, msg=None)
Just like self.assertTrue(a is b), but with a nicer default message.

assertIsInstance(obj, cls, msg=None)
Same as self.assertTrue(isinstance(obj, cls)), with a nicer default message.

assertIsNone(obj, msg=None)
Same as self.assertTrue(obj is None), with a nicer default message.

assertIsNot(expr1, expr2, msg=None)
Just like self.assertTrue(a is not b), but with a nicer default message.

assertIsNotNone(obj, msg=None)
Included for symmetry with assertIsNone.

assertLess(a, b, msg=None)
Just like self.assertTrue(a < b), but with a nicer default message.

assertLessEqual(a, b, msg=None)
Just like self.assertTrue(a <= b), but with a nicer default message.

assertListEqual(list1, list2, msg=None)
A list-specific equality assertion.

Parameters

• list1 – The first list to compare.

• list2 – The second list to compare.

• msg – Optional message to use on failure instead of a list of differences.

assertLogs(logger=None, level=None)
Fail unless a log message of level level or higher is emitted on logger_name or its children. If omitted,
level defaults to INFO and logger defaults to the root logger.

This method must be used as a context manager, and will yield a recording object with two attributes:
output and records. At the end of the context manager, the output attribute will be a list of the matching
formatted log messages and the records attribute will be a list of the corresponding LogRecord objects.

Example:

with self.assertLogs('foo', level='INFO') as cm:
logging.getLogger('foo').info('first message')
logging.getLogger('foo.bar').error('second message')

self.assertEqual(cm.output, ['INFO:foo:first message',
'ERROR:foo.bar:second message'])

7.3. API Reference 181

MPF Documentation Developer Documentation, Release 0.50.22

assertMultiLineEqual(first, second, msg=None)
Assert that two multi-line strings are equal.

assertNotAlmostEqual(first, second, places=None, msg=None, delta=None)
Fail if the two objects are equal as determined by their difference rounded to the given number of decimal
places (default 7) and comparing to zero, or by comparing that the between the two objects is less than the
given delta.

Note that decimal places (from zero) are usually not the same as significant digits (measured from the most
signficant digit).

Objects that are equal automatically fail.

assertNotEqual(first, second, msg=None)
Fail if the two objects are equal as determined by the ‘!=’ operator.

assertNotIn(member, container, msg=None)
Just like self.assertTrue(a not in b), but with a nicer default message.

assertNotIsInstance(obj, cls, msg=None)
Included for symmetry with assertIsInstance.

assertNotRegex(text, unexpected_regex, msg=None)
Fail the test if the text matches the regular expression.

assertNumBallsKnown(balls)
Assert that a certain number of balls are known in the machine.

assertRaises(expected_exception, *args, **kwargs)
Fail unless an exception of class expected_exception is raised by the callable when invoked with specified
positional and keyword arguments. If a different type of exception is raised, it will not be caught, and the
test case will be deemed to have suffered an error, exactly as for an unexpected exception.

If called with the callable and arguments omitted, will return a context object used like this:

with self.assertRaises(SomeException):
do_something()

An optional keyword argument ‘msg’ can be provided when assertRaises is used as a context object.

The context manager keeps a reference to the exception as the ‘exception’ attribute. This allows you to
inspect the exception after the assertion:

with self.assertRaises(SomeException) as cm:
do_something()

the_exception = cm.exception
self.assertEqual(the_exception.error_code, 3)

assertRaisesRegex(expected_exception, expected_regex, *args, **kwargs)
Asserts that the message in a raised exception matches a regex.

Parameters

• expected_exception – Exception class expected to be raised.

• expected_regex – Regex (re pattern object or string) expected to be found in error
message.

• args – Function to be called and extra positional args.

• kwargs – Extra kwargs.

182 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

• msg – Optional message used in case of failure. Can only be used when assertRaisesRegex
is used as a context manager.

assertRegex(text, expected_regex, msg=None)
Fail the test unless the text matches the regular expression.

assertSequenceEqual(seq1, seq2, msg=None, seq_type=None)
An equality assertion for ordered sequences (like lists and tuples).

For the purposes of this function, a valid ordered sequence type is one which can be indexed, has a length,
and has an equality operator.

Parameters

• seq1 – The first sequence to compare.

• seq2 – The second sequence to compare.

• seq_type – The expected datatype of the sequences, or None if no datatype should be
enforced.

• msg – Optional message to use on failure instead of a list of differences.

assertSetEqual(set1, set2, msg=None)
A set-specific equality assertion.

Parameters

• set1 – The first set to compare.

• set2 – The second set to compare.

• msg – Optional message to use on failure instead of a list of differences.

assertSetEqual uses ducktyping to support different types of sets, and is optimized for sets specifically
(parameters must support a difference method).

assertShotEnabled(shot_name)
Assert that a shot is enabled.

Parameters shot_name – String name of the shot.

assertShotProfile(shot_name, profile_name)
Assert that the highest priority profile for a shot is a certain profile name.

Parameters

• shot_name – String name of the shot.

• profile_name – String name of the profile.

assertShotProfileState(shot_name, state_name)
Assert that the highest priority profile for a shot is in a certain state.

Parameters

• shot_name – String name of the shot.

• state_name – String name of the state.

assertShotShow(shot_name, show_name)
Assert that the highest priority running show for a shot is a certain show name.

Parameters

• shot_name – String name of the shot.

• show_name – String name of the show.

7.3. API Reference 183

MPF Documentation Developer Documentation, Release 0.50.22

assertTrue(expr, msg=None)
Check that the expression is true.

assertTupleEqual(tuple1, tuple2, msg=None)
A tuple-specific equality assertion.

Parameters

• tuple1 – The first tuple to compare.

• tuple2 – The second tuple to compare.

• msg – Optional message to use on failure instead of a list of differences.

assertWarns(expected_warning, *args, **kwargs)
Fail unless a warning of class warnClass is triggered by the callable when invoked with specified positional
and keyword arguments. If a different type of warning is triggered, it will not be handled: depending on
the other warning filtering rules in effect, it might be silenced, printed out, or raised as an exception.

If called with the callable and arguments omitted, will return a context object used like this:

with self.assertWarns(SomeWarning):
do_something()

An optional keyword argument ‘msg’ can be provided when assertWarns is used as a context object.

The context manager keeps a reference to the first matching warning as the ‘warning’ attribute; similarly,
the ‘filename’ and ‘lineno’ attributes give you information about the line of Python code from which the
warning was triggered. This allows you to inspect the warning after the assertion:

with self.assertWarns(SomeWarning) as cm:
do_something()

the_warning = cm.warning
self.assertEqual(the_warning.some_attribute, 147)

assertWarnsRegex(expected_warning, expected_regex, *args, **kwargs)
Asserts that the message in a triggered warning matches a regexp. Basic functioning is similar to as-
sertWarns() with the addition that only warnings whose messages also match the regular expression are
considered successful matches.

Parameters

• expected_warning – Warning class expected to be triggered.

• expected_regex – Regex (re pattern object or string) expected to be found in error
message.

• args – Function to be called and extra positional args.

• kwargs – Extra kwargs.

• msg – Optional message used in case of failure. Can only be used when assertWarnsRegex
is used as a context manager.

fail(msg=None)
Fail immediately, with the given message.

getConfigFile()
Return a string name of the machine config file to use for the tests in this class.

You should override this method in your own test class to point to the config file you need for your tests.

Returns A string name of the machine config file to use, complete with the .yaml file exten-
sion.

184 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

For example:

def getConfigFile(self):
return 'my_config.yaml'

getMachinePath()
Return a string name of the path to the machine folder to use for the tests in this class.

You should override this method in your own test class to point to the machine folder root you need for
your tests.

Returns A string name of the machine path to use

For example:

def getMachinePath(self):
return 'tests/machine_files/my_test/'

Note that this path is relative to the MPF package root

get_enable_plugins()
Control whether tests in this class should load MPF plugins.

Returns: True or False

The default is False. To load plugins in your test class, add the following:

def get_enable_plugins(self):
return True

get_platform()
Force this test class to use a certain platform.

Returns String name of the platform this test class will use.

If you don’t include this method in your test class, the platform will be set to virtual. If you want to use
the smart virtual platform, you would add the following to your test class:

def get_platform(self):
return 'smart_virtual`

get_timer(timer)
Return a timer object from a mode based on a name.

Parameters timer – String name of the timer to look for.

Returns A Timer object.

Raises AssertionError if the timer does not exist. –

get_use_bcp()
Control whether tests in this class should use BCP.

Returns: True or False

The default is False. To use BCP in your test class, add the following:

def get_use_bcp(self):
return True

hit_and_release_switch(name)
Momentarily activates and then deactivates a switch.

7.3. API Reference 185

MPF Documentation Developer Documentation, Release 0.50.22

Parameters name – The name of the switch to hit.

This method immediately activates and deactivates a switch with no time in between.

hit_switch_and_run(name, delta)
Activates a switch and advances the time.

Parameters

• name – The name of the switch to activate.

• delta – The time (in seconds) to advance the clock.

Note that this method does not deactivate the switch once the time has been advanced, meaning the switch
stays active. To make the switch inactive, use the release_switch_and_run().

machine_run()
Process any delays, timers, or anything else scheduled.

Note this is the same as:

self.advance_time_and_run(0)

mock_event(event_name)
Configure an event to be mocked.

Parameters event_name – String name of the event to mock.

Mocking an event is an easy way to check if an event was called without configuring some kind of callback
action in your tests.

Note that an event must be mocked here before it’s posted in order for assertEventNotCalled()
and assertEventCalled() to work.

Mocking an event will not “break” it. In other words, any other registered handlers for this event will also
be called even if the event has been mocked.

For example:

self.mock_event('my_event')
self.assertEventNotCalled('my_event') # This will be True
self.post_event('my_event')
self.assertEventCalled('my_event') # This will also be True

post_event(event_name, run_time=0)
Post an MPF event and optionally advance the time.

Parameters

• event_name – String name of the event to post

• run_time – How much time (in seconds) the test should advance after this event has
been posted.

For example, to post an event called “shot1_hit”:

self.post_event('shot1_hit')

To post an event called “tilt” and then advance the time 1.5 seconds:

self.post_event('tilt', 1.5)

post_event_with_params(event_name, **params)
Post an MPF event with kwarg parameters.

186 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

Parameters

• event_name – String name of the event to post

• **params – One or more kwarg key/value pairs to post with the event.

For example, to post an event called “jackpot” with the parameters count=1 and first_time=True,
you would use:

self.post_event('jackpot', count=1, first_time=True)

release_switch_and_run(name, delta)
Deactivates a switch and advances the time.

Parameters

• name – The name of the switch to activate.

• delta – The time (in seconds) to advance the clock.

reset_mock_events()
Reset all mocked events.

This will reset the count of number of times called every mocked event is.

setUp()
Hook method for setting up the test fixture before exercising it.

set_num_balls_known(balls)
Set the ball controller’s num_balls_known attribute.

This is needed for tests where you don’t have any ball devices and other situations where you need the ball
controller to think the machine has a certain amount of balls to run a test.

Example:

self.set_num_balls_known(3)

shortDescription()
Returns a one-line description of the test, or None if no description has been provided.

The default implementation of this method returns the first line of the specified test method’s docstring.

skipTest(reason)
Skip this test.

start_mode(mode)
Start mode.

stop_mode(mode)
Stop mode.

tearDown()
Hook method for deconstructing the test fixture after testing it.

unittest_verbosity()
Return the verbosity setting of the currently running unittest program, or 0 if none is running.

Returns: An integer value of the current verbosity setting.

7.3. API Reference 187

MPF Documentation Developer Documentation, Release 0.50.22

MpfTestCase

class mpf.tests.MpfTestCase.MpfTestCase(methodName=’runTest’)
Bases: unittest.case.TestCase

Primary TestCase class used for all MPF unit tests.

Methods & Attributes

The MpfTestCase has the following methods & attributes available. Note that methods & attributes inherited
from the base class are not included here.

advance_time_and_run(delta=1.0)
Advance the test clock and run anything that should run during that time.

Parameters delta – How much time to advance the test clock by (in seconds)

This method will cause anything scheduled during the time to run, including things like delays, timers, etc.

Advancing the clock will happen in multiple small steps if things are scheduled to happen during this
advance. For example, you can advance the clock 10 seconds like this:

self.advance_time_and_run(10)

If there is a delay callback that is scheduled to happen in 2 seconds, then this method will advance the
clock 2 seconds, process that delay, and then advance the remaining 8 seconds.

assertAlmostEqual(first, second, places=None, msg=None, delta=None)
Fail if the two objects are unequal as determined by their difference rounded to the given number of decimal
places (default 7) and comparing to zero, or by comparing that the between the two objects is more than
the given delta.

Note that decimal places (from zero) are usually not the same as significant digits (measured from the most
signficant digit).

If the two objects compare equal then they will automatically compare almost equal.

assertColorAlmostEqual(color1, color2, delta=6)
Assert that two color are almost equal.

Parameters

• color1 – The first color, as an RGBColor instance or 3-item iterable.

• color2 – The second color, as an RGBColor instance or 3-item iterable.

• delta – How close the colors have to be. The deltas between red, green, and blue are
added together and must be less or equal to this value for this assertion to succeed.

assertCountEqual(first, second, msg=None)
An unordered sequence comparison asserting that the same elements, regardless of order. If the same
element occurs more than once, it verifies that the elements occur the same number of times.

self.assertEqual(Counter(list(first)), Counter(list(second)))

Example:

• [0, 1, 1] and [1, 0, 1] compare equal.

• [0, 0, 1] and [0, 1] compare unequal.

188 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

assertDictContainsSubset(subset, dictionary, msg=None)
Checks whether dictionary is a superset of subset.

assertEqual(first, second, msg=None)
Fail if the two objects are unequal as determined by the ‘==’ operator.

assertEventCalled(event_name, times=None)
Assert that event was called.

Parameters

• event_name – String name of the event to check.

• times – An optional value to confirm the number of times the event was called. Default
of None means this method will pass as long as the event has been called at least once.

If you want to reset the times count, you can mock the event again.

Note that the event must be mocked via self.mock_event() first in order to use this method.

For example:

self.mock_event('my_event')
self.assertEventNotCalled('my_event') # This will pass

self.post_event('my_event')
self.assertEventCalled('my_event') # This will pass
self.assertEventCalled('my_event', 1) # This will pass

self.post_event('my_event')
self.assertEventCalled('my_event') # This will pass
self.assertEventCalled('my_event', 2) # This will pass

assertEventCalledWith(event_name, **kwargs)
Assert an event was called with certain kwargs.

Parameters

• event_name – String name of the event to check.

• **kwargs – Name/value parameters to check.

For example:

self.mock_event('jackpot')

self.post_event('jackpot', count=1, first_time=True)
self.assertEventCalled('jackpot') # This will pass
self.assertEventCalledWith('jackpot', count=1, first_time=True) # This will
→˓also pass
self.assertEventCalledWith('jackpot', count=1, first_time=False) # This will
→˓fail

assertEventNotCalled(event_name)
Assert that event was not called.

Parameters event_name – String name of the event to check.

Note that the event must be mocked via self.mock_event() first in order to use this method.

assertFalse(expr, msg=None)
Check that the expression is false.

7.3. API Reference 189

MPF Documentation Developer Documentation, Release 0.50.22

assertGreater(a, b, msg=None)
Just like self.assertTrue(a > b), but with a nicer default message.

assertGreaterEqual(a, b, msg=None)
Just like self.assertTrue(a >= b), but with a nicer default message.

assertIn(member, container, msg=None)
Just like self.assertTrue(a in b), but with a nicer default message.

assertIs(expr1, expr2, msg=None)
Just like self.assertTrue(a is b), but with a nicer default message.

assertIsInstance(obj, cls, msg=None)
Same as self.assertTrue(isinstance(obj, cls)), with a nicer default message.

assertIsNone(obj, msg=None)
Same as self.assertTrue(obj is None), with a nicer default message.

assertIsNot(expr1, expr2, msg=None)
Just like self.assertTrue(a is not b), but with a nicer default message.

assertIsNotNone(obj, msg=None)
Included for symmetry with assertIsNone.

assertLess(a, b, msg=None)
Just like self.assertTrue(a < b), but with a nicer default message.

assertLessEqual(a, b, msg=None)
Just like self.assertTrue(a <= b), but with a nicer default message.

assertListEqual(list1, list2, msg=None)
A list-specific equality assertion.

Parameters

• list1 – The first list to compare.

• list2 – The second list to compare.

• msg – Optional message to use on failure instead of a list of differences.

assertLogs(logger=None, level=None)
Fail unless a log message of level level or higher is emitted on logger_name or its children. If omitted,
level defaults to INFO and logger defaults to the root logger.

This method must be used as a context manager, and will yield a recording object with two attributes:
output and records. At the end of the context manager, the output attribute will be a list of the matching
formatted log messages and the records attribute will be a list of the corresponding LogRecord objects.

Example:

with self.assertLogs('foo', level='INFO') as cm:
logging.getLogger('foo').info('first message')
logging.getLogger('foo.bar').error('second message')

self.assertEqual(cm.output, ['INFO:foo:first message',
'ERROR:foo.bar:second message'])

assertMultiLineEqual(first, second, msg=None)
Assert that two multi-line strings are equal.

assertNotAlmostEqual(first, second, places=None, msg=None, delta=None)
Fail if the two objects are equal as determined by their difference rounded to the given number of decimal
places (default 7) and comparing to zero, or by comparing that the between the two objects is less than the
given delta.

190 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

Note that decimal places (from zero) are usually not the same as significant digits (measured from the most
signficant digit).

Objects that are equal automatically fail.

assertNotEqual(first, second, msg=None)
Fail if the two objects are equal as determined by the ‘!=’ operator.

assertNotIn(member, container, msg=None)
Just like self.assertTrue(a not in b), but with a nicer default message.

assertNotIsInstance(obj, cls, msg=None)
Included for symmetry with assertIsInstance.

assertNotRegex(text, unexpected_regex, msg=None)
Fail the test if the text matches the regular expression.

assertNumBallsKnown(balls)
Assert that a certain number of balls are known in the machine.

assertRaises(expected_exception, *args, **kwargs)
Fail unless an exception of class expected_exception is raised by the callable when invoked with specified
positional and keyword arguments. If a different type of exception is raised, it will not be caught, and the
test case will be deemed to have suffered an error, exactly as for an unexpected exception.

If called with the callable and arguments omitted, will return a context object used like this:

with self.assertRaises(SomeException):
do_something()

An optional keyword argument ‘msg’ can be provided when assertRaises is used as a context object.

The context manager keeps a reference to the exception as the ‘exception’ attribute. This allows you to
inspect the exception after the assertion:

with self.assertRaises(SomeException) as cm:
do_something()

the_exception = cm.exception
self.assertEqual(the_exception.error_code, 3)

assertRaisesRegex(expected_exception, expected_regex, *args, **kwargs)
Asserts that the message in a raised exception matches a regex.

Parameters

• expected_exception – Exception class expected to be raised.

• expected_regex – Regex (re pattern object or string) expected to be found in error
message.

• args – Function to be called and extra positional args.

• kwargs – Extra kwargs.

• msg – Optional message used in case of failure. Can only be used when assertRaisesRegex
is used as a context manager.

assertRegex(text, expected_regex, msg=None)
Fail the test unless the text matches the regular expression.

assertSequenceEqual(seq1, seq2, msg=None, seq_type=None)
An equality assertion for ordered sequences (like lists and tuples).

7.3. API Reference 191

MPF Documentation Developer Documentation, Release 0.50.22

For the purposes of this function, a valid ordered sequence type is one which can be indexed, has a length,
and has an equality operator.

Parameters

• seq1 – The first sequence to compare.

• seq2 – The second sequence to compare.

• seq_type – The expected datatype of the sequences, or None if no datatype should be
enforced.

• msg – Optional message to use on failure instead of a list of differences.

assertSetEqual(set1, set2, msg=None)
A set-specific equality assertion.

Parameters

• set1 – The first set to compare.

• set2 – The second set to compare.

• msg – Optional message to use on failure instead of a list of differences.

assertSetEqual uses ducktyping to support different types of sets, and is optimized for sets specifically
(parameters must support a difference method).

assertShotEnabled(shot_name)
Assert that a shot is enabled.

Parameters shot_name – String name of the shot.

assertShotProfile(shot_name, profile_name)
Assert that the highest priority profile for a shot is a certain profile name.

Parameters

• shot_name – String name of the shot.

• profile_name – String name of the profile.

assertShotProfileState(shot_name, state_name)
Assert that the highest priority profile for a shot is in a certain state.

Parameters

• shot_name – String name of the shot.

• state_name – String name of the state.

assertShotShow(shot_name, show_name)
Assert that the highest priority running show for a shot is a certain show name.

Parameters

• shot_name – String name of the shot.

• show_name – String name of the show.

assertTrue(expr, msg=None)
Check that the expression is true.

assertTupleEqual(tuple1, tuple2, msg=None)
A tuple-specific equality assertion.

Parameters

192 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

• tuple1 – The first tuple to compare.

• tuple2 – The second tuple to compare.

• msg – Optional message to use on failure instead of a list of differences.

assertWarns(expected_warning, *args, **kwargs)
Fail unless a warning of class warnClass is triggered by the callable when invoked with specified positional
and keyword arguments. If a different type of warning is triggered, it will not be handled: depending on
the other warning filtering rules in effect, it might be silenced, printed out, or raised as an exception.

If called with the callable and arguments omitted, will return a context object used like this:

with self.assertWarns(SomeWarning):
do_something()

An optional keyword argument ‘msg’ can be provided when assertWarns is used as a context object.

The context manager keeps a reference to the first matching warning as the ‘warning’ attribute; similarly,
the ‘filename’ and ‘lineno’ attributes give you information about the line of Python code from which the
warning was triggered. This allows you to inspect the warning after the assertion:

with self.assertWarns(SomeWarning) as cm:
do_something()

the_warning = cm.warning
self.assertEqual(the_warning.some_attribute, 147)

assertWarnsRegex(expected_warning, expected_regex, *args, **kwargs)
Asserts that the message in a triggered warning matches a regexp. Basic functioning is similar to as-
sertWarns() with the addition that only warnings whose messages also match the regular expression are
considered successful matches.

Parameters

• expected_warning – Warning class expected to be triggered.

• expected_regex – Regex (re pattern object or string) expected to be found in error
message.

• args – Function to be called and extra positional args.

• kwargs – Extra kwargs.

• msg – Optional message used in case of failure. Can only be used when assertWarnsRegex
is used as a context manager.

fail(msg=None)
Fail immediately, with the given message.

getConfigFile()
Return a string name of the machine config file to use for the tests in this class.

You should override this method in your own test class to point to the config file you need for your tests.

Returns A string name of the machine config file to use, complete with the .yaml file exten-
sion.

For example:

def getConfigFile(self):
return 'my_config.yaml'

7.3. API Reference 193

MPF Documentation Developer Documentation, Release 0.50.22

getMachinePath()
Return a string name of the path to the machine folder to use for the tests in this class.

You should override this method in your own test class to point to the machine folder root you need for
your tests.

Returns A string name of the machine path to use

For example:

def getMachinePath(self):
return 'tests/machine_files/my_test/'

Note that this path is relative to the MPF package root

get_enable_plugins()
Control whether tests in this class should load MPF plugins.

Returns: True or False

The default is False. To load plugins in your test class, add the following:

def get_enable_plugins(self):
return True

get_platform()
Force this test class to use a certain platform.

Returns String name of the platform this test class will use.

If you don’t include this method in your test class, the platform will be set to virtual. If you want to use
the smart virtual platform, you would add the following to your test class:

def get_platform(self):
return 'smart_virtual`

get_timer(timer)
Return a timer object from a mode based on a name.

Parameters timer – String name of the timer to look for.

Returns A Timer object.

Raises AssertionError if the timer does not exist. –

get_use_bcp()
Control whether tests in this class should use BCP.

Returns: True or False

The default is False. To use BCP in your test class, add the following:

def get_use_bcp(self):
return True

hit_and_release_switch(name)
Momentarily activates and then deactivates a switch.

Parameters name – The name of the switch to hit.

This method immediately activates and deactivates a switch with no time in between.

hit_switch_and_run(name, delta)
Activates a switch and advances the time.

194 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

Parameters

• name – The name of the switch to activate.

• delta – The time (in seconds) to advance the clock.

Note that this method does not deactivate the switch once the time has been advanced, meaning the switch
stays active. To make the switch inactive, use the release_switch_and_run().

machine_run()
Process any delays, timers, or anything else scheduled.

Note this is the same as:

self.advance_time_and_run(0)

mock_event(event_name)
Configure an event to be mocked.

Parameters event_name – String name of the event to mock.

Mocking an event is an easy way to check if an event was called without configuring some kind of callback
action in your tests.

Note that an event must be mocked here before it’s posted in order for assertEventNotCalled()
and assertEventCalled() to work.

Mocking an event will not “break” it. In other words, any other registered handlers for this event will also
be called even if the event has been mocked.

For example:

self.mock_event('my_event')
self.assertEventNotCalled('my_event') # This will be True
self.post_event('my_event')
self.assertEventCalled('my_event') # This will also be True

post_event(event_name, run_time=0)
Post an MPF event and optionally advance the time.

Parameters

• event_name – String name of the event to post

• run_time – How much time (in seconds) the test should advance after this event has
been posted.

For example, to post an event called “shot1_hit”:

self.post_event('shot1_hit')

To post an event called “tilt” and then advance the time 1.5 seconds:

self.post_event('tilt', 1.5)

post_event_with_params(event_name, **params)
Post an MPF event with kwarg parameters.

Parameters

• event_name – String name of the event to post

• **params – One or more kwarg key/value pairs to post with the event.

7.3. API Reference 195

MPF Documentation Developer Documentation, Release 0.50.22

For example, to post an event called “jackpot” with the parameters count=1 and first_time=True,
you would use:

self.post_event('jackpot', count=1, first_time=True)

release_switch_and_run(name, delta)
Deactivates a switch and advances the time.

Parameters

• name – The name of the switch to activate.

• delta – The time (in seconds) to advance the clock.

reset_mock_events()
Reset all mocked events.

This will reset the count of number of times called every mocked event is.

setUp()
Hook method for setting up the test fixture before exercising it.

set_num_balls_known(balls)
Set the ball controller’s num_balls_known attribute.

This is needed for tests where you don’t have any ball devices and other situations where you need the ball
controller to think the machine has a certain amount of balls to run a test.

Example:

self.set_num_balls_known(3)

shortDescription()
Returns a one-line description of the test, or None if no description has been provided.

The default implementation of this method returns the first line of the specified test method’s docstring.

skipTest(reason)
Skip this test.

start_mode(mode)
Start mode.

stop_mode(mode)
Stop mode.

tearDown()
Hook method for deconstructing the test fixture after testing it.

unittest_verbosity()
Return the verbosity setting of the currently running unittest program, or 0 if none is running.

Returns: An integer value of the current verbosity setting.

TestDataManager

class mpf.tests.TestDataManager.TestDataManager(data)
Bases: mpf.core.data_manager.DataManager

A patched version of the DataManager which is used in unit tests.

The main change is that the save_all() method doesn’t actually write anything to disk so the tests don’t fill
up the disk with unneeded data.

196 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

Methods & Attributes

The TestDataManager has the following methods & attributes available. Note that methods & attributes inherited
from the base class are not included here.

get_data(section=None)
Return the value of this DataManager’s data.

Parameters section – Optional string name of a section (dictionary key) for the data you
want returned. Default is None which returns the entire dictionary.

ignorable_runtime_exception(msg: str)→ None
Handle ignorable runtime exception.

During development or tests raise an exception for easier debugging. Log an error during production.

raise_config_error(msg, error_no, *, context=None)
Raise a ConfigFileError exception.

save_all(data)
Update all data.

warning_log(msg: str, *args, context=None, **kwargs)→ None
Log a message at the warning level.

These messages will always be shown in the console and the log file.

TestMachineController

class mpf.tests.MpfTestCase.TestMachineController(mpf_path, machine_path, op-
tions, config_patches, con-
fig_defaults, clock, mock_data,
enable_plugins=False)

Bases: mpf.core.machine.MachineController

A patched version of the MachineController used in tests.

The TestMachineController has a few changes from the regular machine controller to facilitate running unit
tests, including:

• Use the TestDataManager instead of the real one.

• Use a test clock which we can manually advance instead of the regular clock tied to real-world time.

• Only load plugins if self._enable_plugins is True.

• Merge any test_config_patches into the machine config.

• Disabled the config file caching to always load the config from disk.

Methods & Attributes

The TestMachineController has the following methods & attributes available. Note that methods & attributes
inherited from the base class are not included here.

add_platform(name: str)→ None
Make an additional hardware platform interface available to MPF.

Parameters name – String name of the platform to add. Must match the name of a platform file
in the mpf/platforms folder (without the .py extension).

7.3. API Reference 197

MPF Documentation Developer Documentation, Release 0.50.22

clear_boot_hold(hold: str)→ None
Clear a boot hold.

configure_machine_var(name: str, persist: bool, expire_secs: int = None)→ None
Create a new machine variable.

Parameters

• name – String name of the variable.

• persist – Boolean as to whether this variable should be saved to disk so it’s available
the next time MPF boots.

• expire_secs – Optional number of seconds you’d like this variable to persist on disk
for. When MPF boots, if the expiration time of the variable is in the past, it will not be
loaded. For example, this lets you write the number of credits on the machine to disk to
persist even during power off, but you could set it so that those only stay persisted for an
hour.

create_data_manager(config_name)
Return a new DataManager for a certain config.

Parameters config_name – Name of the config

get_machine_var(name: str)→ Any
Return the value of a machine variable.

Parameters name – String name of the variable you want to get that value for.

Returns The value of the variable if it exists, or None if the variable does not exist.

get_platform_sections(platform_section: str, overwrite: str)→ SmartVirtualHardwarePlatform
Return platform section.

ignorable_runtime_exception(msg: str)→ None
Handle ignorable runtime exception.

During development or tests raise an exception for easier debugging. Log an error during production.

init_done()→ Generator[[int, None], None]
Finish init.

Called when init is done and all boot holds are cleared.

initialise()→ Generator[[int, None], None]
Initialise machine.

initialise_core_and_hardware()→ Generator[[int, None], None]
Load core modules and hardware.

initialise_mpf()
Initialise MPF.

is_machine_var(name: str)→ bool
Return true if machine variable exists.

raise_config_error(msg, error_no, *, context=None)
Raise a ConfigFileError exception.

register_boot_hold(hold: str)→ None
Register a boot hold.

register_monitor(monitor_class: str, monitor: Callable[..., Any])→ None
Register a monitor.

198 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

Parameters

• monitor_class – String name of the monitor class for this monitor that’s being regis-
tered.

• monitor – Callback to notify

MPF uses monitors to allow components to monitor certain internal elements of MPF.

For example, a player variable monitor could be setup to be notified of any changes to a player variable, or
a switch monitor could be used to allow a plugin to be notified of any changes to any switches.

The MachineController’s list of registered monitors doesn’t actually do anything. Rather it’s a dictionary
of sets which the monitors themselves can reference when they need to do something. We just needed a
central registry of monitors.

remove_machine_var(name: str)→ None
Remove a machine variable by name.

If this variable persists to disk, it will remove it from there too.

Parameters name – String name of the variable you want to remove.

remove_machine_var_search(startswith: str = ”, endswith: str = ”)→ None
Remove a machine variable by matching parts of its name.

Parameters

• startswith – Optional start of the variable name to match.

• endswith – Optional end of the variable name to match.

For example, if you pass startswit=’player’ and endswith=’score’, this method will match and remove
player1_score, player2_score, etc.

reset()→ Generator[[int, None], None]
Reset the machine.

This method is safe to call. It essentially sets up everything from scratch without reloading the config files
and assets from disk. This method is called after a game ends and before attract mode begins.

run()→ None
Start the main machine run loop.

set_default_platform(name: str)→ None
Set the default platform.

It is used if a device class-specific or device-specific platform is not specified.

Parameters name – String name of the platform to set to default.

set_machine_var(name: str, value: Any)→ None
Set the value of a machine variable.

Parameters

• name – String name of the variable you’re setting the value for.

• value – The value you’re setting. This can be any Type.

shutdown()→ None
Shutdown the machine.

stop(**kwargs)→ None
Perform a graceful exit of MPF.

7.3. API Reference 199

MPF Documentation Developer Documentation, Release 0.50.22

validate_machine_config_section(section: str)→ None
Validate a config section.

verify_system_info()
Dump information about the Python installation to the log.

Information includes Python version, Python executable, platform, and core architecture.

warning_log(msg: str, *args, context=None, **kwargs)→ None
Log a message at the warning level.

These messages will always be shown in the console and the log file.

7.3.7 Miscellaneous Components

There are several other components and systems of MPF that don’t fit into any of the other categories. Those are
covered here.

Ball Search

class mpf.core.ball_search.BallSearch(machine: mpf.core.machine.MachineController, play-
field: Playfield)

Bases: mpf.core.mpf_controller.MpfController

Implements Ball search for a playfield device.

In MPF, the ball search functionality is attached to each playfield device, rather than being done at the global
level. (In other words, each playfield is responsible for making sure no balls get stuck on it, and it leverages an
instance of this BallSearch class to handle it.)

Methods & Attributes

The Ball Search has the following methods & attributes available. Note that methods & attributes inherited from
the base class are not included here.

block(**kwargs)
Block ball search for this playfield.

Blocking will disable ball search if it’s enabled or running, and will prevent ball search from enabling if
it’s disabled until ball_search_unblock() is called.

blocked = None
If True, ball search will be blocked and will not start.

cancel_ball_search(**kwargs)
Cancel the current ball search and mark the ball as missing.

configure_logging(logger: str, console_level: str = ’basic’, file_level: str = ’basic’)
Configure logging.

Parameters

• logger – The string name of the logger to use.

• console_level – The level of logging for the console. Valid options are “none”,
“basic”, or “full”.

• file_level – The level of logging for the console. Valid options are “none”, “basic”,
or “full”.

200 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

debug_log(msg: str, *args, **kwargs)→ None
Log a message at the debug level.

Note that whether this message shows up in the console or log file is controlled by the settings used with
configure_logging().

disable(**kwargs)
Disable ball search.

This method will also stop the ball search if it is running.

enable(**kwargs)
Enable the ball search for this playfield.

Note that this method does not start the ball search process. Rather it just resets and starts the timeout
timer, as well as resetting it when playfield switches are hit.

enabled = None
Is ball search enabled.

error_log(msg: str, *args, context=None, **kwargs)→ None
Log a message at the error level.

These messages will always be shown in the console and the log file.

give_up()
Give up the ball search.

This method is called when the ball search process Did not find the missing ball. It executes the failed
action which depending on the specification of ball_search_failed_action, either adds a replacement ball,
ends the game, or ends the current ball.

ignorable_runtime_exception(msg: str)→ None
Handle ignorable runtime exception.

During development or tests raise an exception for easier debugging. Log an error during production.

info_log(msg: str, *args, context=None, **kwargs)→ None
Log a message at the info level.

Whether this message shows up in the console or log file is controlled by the settings used with config-
ure_logging().

iteration = None
Current iteration of the ball search, or False if ball search is not started.

phase = None
Current phase of the ball search, or False if ball search is not started.

playfield = None
The playfield device this ball search instance is attached to.

raise_config_error(msg, error_no, *, context=None)
Raise a ConfigFileError exception.

register(priority, callback, name, *, restore_callback=None)
Register a callback for sequential ball search.

Callbacks are called by priority. Ball search only waits if the callback returns true.

Parameters

• priority – priority of this callback in the ball search procedure

7.3. API Reference 201

MPF Documentation Developer Documentation, Release 0.50.22

• callback – callback to call. ball search will wait before the next callback, if it returns
true

• name – string name which is used for debugging & the logs

• restore_callback – optional callback to restore state of the device after ball search
ended

request_to_start_game(**kwargs)
Handle result of the request_to_start_game event.

If ball search is running, this method will return False to prevent the game from starting while ball search
is running.

This method also posts the ball_search_prevents_game_start event if ball search is started.

reset_timer()
Reset the timeout timer which starts ball search.

This method will also cancel an actively running (started) ball search.

This is called by the playfield anytime a playfield switch is hit.

start()
Start ball search the ball search process.

started = None
Is the ball search process started (running) now.

stop()
Stop an actively running ball search.

unblock(**kwargs)
Unblock ball search for this playfield.

This will check to see if there are balls on the playfield, and if so, enable ball search.

warning_log(msg: str, *args, context=None, **kwargs)→ None
Log a message at the warning level.

These messages will always be shown in the console and the log file.

File Manager

class mpf.core.file_manager.FileManager
Bases: object

Manages file interfaces.

Methods & Attributes

The File Manager has the following methods & attributes available. Note that methods & attributes inherited
from the base class are not included here.

static get_file_interface(filename)
Return a file interface.

classmethod init()
Initialise file manager.

static load(filename, verify_version=False, halt_on_error=True)
Load a file by name.

202 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

static locate_file(filename)→ str
Find a file location.

Parameters filename – Filename to locate

Returns: Location of file

static save(filename, data)
Save data to file.

LogMixin

class mpf.core.logging.LogMixin
Bases: object

Mixin class to add smart logging functionality to modules.

Methods & Attributes

The LogMixin has the following methods & attributes available. Note that methods & attributes inherited from
the base class are not included here.

configure_logging(logger: str, console_level: str = ’basic’, file_level: str = ’basic’)
Configure logging.

Parameters

• logger – The string name of the logger to use.

• console_level – The level of logging for the console. Valid options are “none”,
“basic”, or “full”.

• file_level – The level of logging for the console. Valid options are “none”, “basic”,
or “full”.

debug_log(msg: str, *args, **kwargs)→ None
Log a message at the debug level.

Note that whether this message shows up in the console or log file is controlled by the settings used with
configure_logging().

error_log(msg: str, *args, context=None, **kwargs)→ None
Log a message at the error level.

These messages will always be shown in the console and the log file.

ignorable_runtime_exception(msg: str)→ None
Handle ignorable runtime exception.

During development or tests raise an exception for easier debugging. Log an error during production.

info_log(msg: str, *args, context=None, **kwargs)→ None
Log a message at the info level.

Whether this message shows up in the console or log file is controlled by the settings used with config-
ure_logging().

raise_config_error(msg, error_no, *, context=None)
Raise a ConfigFileError exception.

7.3. API Reference 203

MPF Documentation Developer Documentation, Release 0.50.22

warning_log(msg: str, *args, context=None, **kwargs)→ None
Log a message at the warning level.

These messages will always be shown in the console and the log file.

Mode base class

class mpf.core.mode.Mode(machine: MachineController, config, name: str, path)
Bases: mpf.core.logging.LogMixin

Base class for a mode.

Methods & Attributes

The Mode base class has the following methods & attributes available. Note that methods & attributes inherited
from the base class are not included here.

active
Return True if this mode is active.

add_mode_event_handler(event: str, handler: Callable, priority: int = 0, **kwargs)
Register an event handler which is automatically removed when this mode stops.

This method is similar to the Event Manager’s add_handler() method, except this method automatically
unregisters the handlers when the mode ends.

Parameters

• event – String name of the event you’re adding a handler for. Since events are text
strings, they don’t have to be pre-defined.

• handler – The method that will be called when the event is fired.

• priority – An arbitrary integer value that defines what order the handlers will be called
in. The default is 1, so if you have a handler that you want to be called first, add it here
with a priority of 2. (Or 3 or 10 or 100000.) The numbers don’t matter. They’re called
from highest to lowest. (i.e. priority 100 is called before priority 1.)

• **kwargs – Any any additional keyword/argument pairs entered here will be attached
to the handler and called whenever that handler is called. Note these are in addition to
kwargs that could be passed as part of the event post. If there’s a conflict, the event-level
ones will win.

Returns A GUID reference to the handler which you can use to later remove the handler via
remove_handler_by_key. Though you don’t need to remove the handler since the
whole point of this method is they’re automatically removed when the mode stops.

Note that if you do add a handler via this method and then remove it manually, that’s ok too.

auto_stop_on_ball_end = None
Controls whether this mode is stopped when the ball ends, regardless of its stop_events settings.

configure_logging(logger: str, console_level: str = ’basic’, file_level: str = ’basic’)
Configure logging.

Parameters

• logger – The string name of the logger to use.

• console_level – The level of logging for the console. Valid options are “none”,
“basic”, or “full”.

204 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

• file_level – The level of logging for the console. Valid options are “none”, “basic”,
or “full”.

configure_mode_settings(config: dict)→ None
Process this mode’s configuration settings from a config dictionary.

create_mode_devices()→ None
Create new devices that are specified in a mode config that haven’t been created in the machine-wide.

debug_log(msg: str, *args, **kwargs)→ None
Log a message at the debug level.

Note that whether this message shows up in the console or log file is controlled by the settings used with
configure_logging().

delay = None
DelayManager instance for delays in this mode. Note that all delays scheduled here will be automatically
canceled when the mode stops.

error_log(msg: str, *args, context=None, **kwargs)→ None
Log a message at the error level.

These messages will always be shown in the console and the log file.

static get_config_spec()→ str
Return config spec for mode_settings.

ignorable_runtime_exception(msg: str)→ None
Handle ignorable runtime exception.

During development or tests raise an exception for easier debugging. Log an error during production.

info_log(msg: str, *args, context=None, **kwargs)→ None
Log a message at the info level.

Whether this message shows up in the console or log file is controlled by the settings used with config-
ure_logging().

initialise_mode()→ None
Initialise this mode.

is_game_mode
Return true if this is a game mode.

load_mode_devices()→ None
Load config of mode devices.

mode_init()→ None
User-overrideable method which will be called when this mode initializes as part of the MPF boot process.

mode_start(**kwargs)→ None
User-overrideable method which will be called whenever this mode starts (i.e. whenever it becomes active).

mode_stop(**kwargs)→ None
User-overrideable method which will be called whenever this mode stops.

player = None
Reference to the current player object.

raise_config_error(msg, error_no, *, context=None)
Raise a ConfigFileError exception.

7.3. API Reference 205

MPF Documentation Developer Documentation, Release 0.50.22

restart_on_next_ball = None
Controls whether this mode will restart on the next ball. This only works if the mode was running when
the ball ended. It’s tracked per- player in the ‘restart_modes_on_next_ball’ player variable.

start(mode_priority=None, callback=None, **kwargs)→ None
Start this mode.

Parameters

• mode_priority – Integer value of what you want this mode to run at. If you don’t
specify one, it will use the “Mode: priority” setting from this mode’s configuration file.

• **kwargs – Catch-all since this mode might start from events with who-knows-what
keyword arguments.

Warning: You can safely call this method, but do not override it in your mode code. If you want to write
your own mode code by subclassing Mode, put whatever code you want to run when this mode starts in
the mode_start method which will be called automatically.

stop(callback: Any = None, **kwargs)→ bool
Stop this mode.

Parameters

• callback – Method which will be called once this mode has stopped. Will only be
called when the mode is running (includes currently stopping)

• **kwargs – Catch-all since this mode might start from events with who-knows-what
keyword arguments.

Warning: You can safely call this method, but do not override it in your mode code. If you want to write
your own mode code by subclassing Mode, put whatever code you want to run when this mode stops in
the mode_stop method which will be called automatically.

Returns true if the mode is running. Otherwise false.

warning_log(msg: str, *args, context=None, **kwargs)→ None
Log a message at the warning level.

These messages will always be shown in the console and the log file.

Players

class mpf.core.player.Player(machine, index)
Bases: object

Base class for a player in a game.

One instance of this class is automatically created for each player.

The game mode maintains a player attribute which always points to the current player and is available via
self.machine.game.player.

It also contains a player_list attribute which is a list of the player instances (in order) which you can use
to access the non-current player.

This Player class is responsible for tracking player variables which is a dictionary of key/value pairs maintained
on a per-player basis. There are several ways they can be used:

First, player variables can be accessed as attributes of the player object directly. For example, to set a player
variable foo for the current player, you could use:

206 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

self.machine.player.foo = 0

If that variable didn’t exist, it will be automatically created.

You can get the value of player variables by accessing them directly. For example:

print(self.machine.player.foo) # prints 0

If you attempt to access a player variable that doesn’t exist, it will automatically be created with a value of 0.

Every time a player variable is created or changed, an MPF event is posted in the form player_ plus the variable
name. For example, creating or changing the foo variable will cause an event called player_foo to be posted.

The player variable event will have four parameters posted along with it:

• value (the new value)

• prev_value (the old value before it was updated)

• change (the change in the value)

• player_num (the player number the variable belongs to)

For the change parameter, it will attempt to subtract the old value from the new value. If that works, it will
return the result as the change. If it doesn’t work (like if you’re not storing numbers in this variable), then the
change parameter will be True if the new value is different and False if the value didn’t change.

For examples, the following three lines:

self.machine.player.score = 0
self.machine.player.score += 500
self.machine.player.score = 1200

. . . will cause the following three events to be posted:

player_score with Args: value=0, change=0, prev_value=0 player_score with
Args: value=500, change=500, prev_value=0 player_score with Args: value=1200,
change=700, prev_value=500

Methods & Attributes

The Players has the following methods & attributes available. Note that methods & attributes inherited from the
base class are not included here.

enable_events(enable=True, send_all_variables=True)
Enable/disable player variable events.

Parameters

• enable – Flag to enable/disable player variable events

• send_all_variables – Flag indicating whether or not to send an event with the
current value of every player variable.

is_player_var(var_name)
Check if player var exists.

Parameters var_name – String name of the player variable to test.

Returns: True if the variable exists and False if not.

monitor_enabled = False
Class attribute which specifies whether any monitors have been registered to track player variable changes.

7.3. API Reference 207

MPF Documentation Developer Documentation, Release 0.50.22

send_all_variable_events()
Send a player variable event for the current value of all player variables.

RGBAColor

class mpf.core.rgba_color.RGBAColor(color: Union[mpf.core.rgb_color.RGBColor, str, Tu-
ple[int, int, int], Tuple[int, int, int, int], List[int]])

Bases: mpf.core.rgb_color.RGBColor

RGB Color with alpha channel.

Methods & Attributes

The RGBAColor has the following methods & attributes available. Note that methods & attributes inherited
from the base class are not included here.

static add_color(name: str, color: Union[RGBColor, str, List[int], Tuple[int, int, int]])
Add (or updates if it already exists) a color.

Note that this is not permanent, the list is reset when MPF restarts (though you can define your own custom
colors in your config file’s colors: section). You can use this function to dynamically change the values of
colors in shows (they take place the next time an LED switches to that color).

Parameters

• name – String name of the color you want to add/update

• color – The color you want to set. You can pass the same types as the RGBColor class
constructor, including a tuple or list of RGB ints (0-255 each), a hex string, an RGBColor
instance, or a dictionart of red, green, blue key/value pairs.

static blend(start_color, end_color, fraction)
Blend two colors.

Parameters

• start_color – The start color

• end_color – The end color

• fraction – The fraction between 0 and 1 that is used to set the blend point between the
two colors.

Returns: An RGBColor object that is a blend between the start and end colors

blue
Return the blue component of the RGB color representation.

green
Return the green component of the RGB color representation.

hex
Return a 6-char HEX representation of the color.

static hex_to_rgb(_hex: str, default=None)→ Tuple[int, int, int]
Convert a HEX color representation to an RGB color representation.

Parameters

• _hex – The 3- or 6-char hexadecimal string representing the color value.

208 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

• default – The default value to return if _hex is invalid.

Returns: RGB representation of the input HEX value as a 3-item tuple with each item being an inte-
ger 0-255.

name
Return the color name or None.

Returns a string containing a standard color name or None if the current RGB color does not have a
standard name.

static name_to_rgb(name: str, default=(0, 0, 0))→ Tuple[int, int, int]
Convert a standard color name to an RGB value (tuple).

If the name is not found, the default value is returned. :param name: A standard color name. :param
default: The default value to return if the color name is not found. :return: RGB representation of the
named color. :rtype: tuple

static random_rgb()→ Tuple[int, int, int]
Generate a uniformly random RGB value.

Returns A tuple of three integers with values between 0 and 255 inclusive

red
Return the red component of the RGB color representation.

rgb
Return an RGB representation of the color.

static rgb_to_hex(rgb: Tuple[int, int, int])→ str
Convert an RGB color representation to a HEX color representation.

(r, g, b) :: r -> [0, 255] g -> [0, 255] b -> [0, 255]

Parameters rgb – A tuple of three numeric values corresponding to the red, green, and blue
value.

Returns HEX representation of the input RGB value.

Return type str

rgba
Return an RGB representation of the color.

static string_to_rgb(value: str, default=(0, 0, 0))→ Tuple[int, int, int]
Convert a string which could be either a standard color name or a hex value to an RGB value (tuple).

If the name is not found and the supplied value is not a valid hex string it raises an error. :param value:
A standard color name or hex value. :param default: The default value to return if the color name is not
found and the supplied value is not a valid hex color string. :return: RGB representation of the named
color. :rtype: tuple

RGBColor

class mpf.core.rgb_color.RGBColor(color: Union[RGBColor, str, List[int], Tuple[int, int, int]] =
None)

Bases: object

One RGB Color.

7.3. API Reference 209

MPF Documentation Developer Documentation, Release 0.50.22

Methods & Attributes

The RGBColor has the following methods & attributes available. Note that methods & attributes inherited from
the base class are not included here.

static add_color(name: str, color: Union[RGBColor, str, List[int], Tuple[int, int, int]])
Add (or updates if it already exists) a color.

Note that this is not permanent, the list is reset when MPF restarts (though you can define your own custom
colors in your config file’s colors: section). You can use this function to dynamically change the values of
colors in shows (they take place the next time an LED switches to that color).

Parameters

• name – String name of the color you want to add/update

• color – The color you want to set. You can pass the same types as the RGBColor class
constructor, including a tuple or list of RGB ints (0-255 each), a hex string, an RGBColor
instance, or a dictionart of red, green, blue key/value pairs.

static blend(start_color, end_color, fraction)
Blend two colors.

Parameters

• start_color – The start color

• end_color – The end color

• fraction – The fraction between 0 and 1 that is used to set the blend point between the
two colors.

Returns: An RGBColor object that is a blend between the start and end colors

blue
Return the blue component of the RGB color representation.

green
Return the green component of the RGB color representation.

hex
Return a 6-char HEX representation of the color.

static hex_to_rgb(_hex: str, default=None)→ Tuple[int, int, int]
Convert a HEX color representation to an RGB color representation.

Parameters

• _hex – The 3- or 6-char hexadecimal string representing the color value.

• default – The default value to return if _hex is invalid.

Returns: RGB representation of the input HEX value as a 3-item tuple with each item being an inte-
ger 0-255.

name
Return the color name or None.

Returns a string containing a standard color name or None if the current RGB color does not have a
standard name.

210 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

static name_to_rgb(name: str, default=(0, 0, 0))→ Tuple[int, int, int]
Convert a standard color name to an RGB value (tuple).

If the name is not found, the default value is returned. :param name: A standard color name. :param
default: The default value to return if the color name is not found. :return: RGB representation of the
named color. :rtype: tuple

static random_rgb()→ Tuple[int, int, int]
Generate a uniformly random RGB value.

Returns A tuple of three integers with values between 0 and 255 inclusive

red
Return the red component of the RGB color representation.

rgb
Return an RGB representation of the color.

static rgb_to_hex(rgb: Tuple[int, int, int])→ str
Convert an RGB color representation to a HEX color representation.

(r, g, b) :: r -> [0, 255] g -> [0, 255] b -> [0, 255]

Parameters rgb – A tuple of three numeric values corresponding to the red, green, and blue
value.

Returns HEX representation of the input RGB value.

Return type str

static string_to_rgb(value: str, default=(0, 0, 0))→ Tuple[int, int, int]
Convert a string which could be either a standard color name or a hex value to an RGB value (tuple).

If the name is not found and the supplied value is not a valid hex string it raises an error. :param value:
A standard color name or hex value. :param default: The default value to return if the color name is not
found and the supplied value is not a valid hex color string. :return: RGB representation of the named
color. :rtype: tuple

Randomizer

class mpf.core.randomizer.Randomizer(items)
Bases: object

Generic list randomizer.

Methods & Attributes

The Randomizer has the following methods & attributes available. Note that methods & attributes inherited
from the base class are not included here.

get_current()
Return current item.

get_next()
Return next item.

loop
Return loop property.

7.3. API Reference 211

MPF Documentation Developer Documentation, Release 0.50.22

static pick_weighted_random(items)
Pick a random item.

Parameters items – Items to select from

Timers

Utility Functions

class mpf.core.utility_functions.Util
Bases: object

Utility functions for MPF.

Methods & Attributes

The Utility Functions has the following methods & attributes available. Note that methods & attributes inherited
from the base class are not included here.

static any(futures: Iterable[asyncio.futures.Future], loop, timeout=None)
Return first future.

static bin_str_to_hex_str(source_int_str: str, num_chars: int)→ str
Convert binary string to hex string.

static cancel_futures(futures: Iterable[asyncio.futures.Future])
Cancel futures.

static chunker(l, n)
Yield successive n-sized chunks from l.

static convert_to_simply_type(value)
Convert value to a simple type.

static convert_to_type(value, type_name)
Convert value to type.

static db_to_gain(db: float)→ float
Convert a value in decibels (-inf to 0.0) to a gain (0.0 to 1.0).

Parameters db – The decibel value (float) to convert to a gain

Returns Float

static dict_merge(a, b, combine_lists=True)
Recursively merge dictionaries.

Used to merge dictionaries of dictionaries, like when we’re merging together the machine configuration
files. This method is called recursively as it finds sub-dictionaries.

For example, in the traditional python dictionary update() methods, if a dictionary key exists in the original
and merging-in dictionary, the new value will overwrite the old value.

Consider the following example:

Original dictionary: config[‘foo’][‘bar’] = 1

New dictionary we’re merging in: config[‘foo’][‘other_bar’] = 2

Default python dictionary update() method would have the updated dictionary as this:

{‘foo’: {‘other_bar’: 2}}

212 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

This happens because the original dictionary which had the single key bar was overwritten by a new
dictionary which has a single key other_bar.)

But really we want this:

{‘foo’: {‘bar’: 1, ‘other_bar’: 2}}

This code was based on this: https://www.xormedia.com/recursively-merge-dictionaries-in-python/

Parameters

• a (dict) – The first dictionary

• b (dict) – The second dictionary

• combine_lists (bool) – Controls whether lists should be combined (extended) or
overwritten. Default is True which combines them.

Returns The merged dictionaries.

static ensure_future(coro_or_future, loop)
Wrap ensure_future.

static event_config_to_dict(config)
Convert event config to a dict.

static first(futures: Iterable[asyncio.futures.Future], loop, timeout=None, cancel_others=True)
Return first future and cancel others.

static get_from_dict(dic, key_path)
Get a value from a nested dict (or dict-like object) from an iterable of key paths.

Parameters

• dic – Nested dict of dicts to get the value from.

• key_path – iterable of key paths

Returns value

This code came from here: http://stackoverflow.com/questions/14692690/
access-python-nested-dictionary-items-via-a-list-of-keys

static get_named_list_from_objects(switches)→ List[str]
Return a list of names from a list of switch objects.

static hex_string_to_int(inputstring: str, maxvalue: int = 255)→ int
Take a string input of hex numbers and an integer.

Parameters

• inputstring – A string of incoming hex colors, like ffff00.

• maxvalue – Integer of the max value you’d like to return. Default is 255. (This is the
real value of why this method exists.)

Returns Integer representation of the hex string.

static hex_string_to_list(input_string, output_length=3)
Take a string input of hex numbers and return a list of integers.

This always groups the hex string in twos, so an input of ffff00 will be returned as [255, 255, 0]

Parameters

• input_string – A string of incoming hex colors, like ffff00.

7.3. API Reference 213

https://www.xormedia.com/recursively-merge-dictionaries-in-python/
http://stackoverflow.com/questions/14692690/access-python-nested-dictionary-items-via-a-list-of-keys
http://stackoverflow.com/questions/14692690/access-python-nested-dictionary-items-via-a-list-of-keys

MPF Documentation Developer Documentation, Release 0.50.22

• output_length – Integer value of the number of items you’d like in your returned list.
Default is 3. This method will ignore extra characters if the input_string is too long, and it
will pad the left with zeros if the input string is too short.

Returns List of integers, like [255, 255, 0]

Raises ValueError if the input string contains non-hex chars –

static int_to_hex_string(source_int: int)→ str
Convert an int from 0-255 to a one-byte (2 chars) hex string, with uppercase characters.

static is_hex_string(string: str)→ bool
Return true if string is hex.

static is_power2(num: int)→ bool
Check a number to see if it’s a power of two.

Parameters num – The number to check

Returns: True or False

static keys_to_lower(source_dict)
Convert the keys of a dictionary to lowercase.

Parameters source_dict – The dictionary you want to convert.

Returns A dictionary with lowercase keys.

static list_of_lists(incoming_string)
Convert an incoming string or list into a list of lists.

static normalize_hex_string(source_hex: str, num_chars: int = 2)→ str
Take an incoming hex value and convert it to uppercase and fills in leading zeros.

Parameters

• source_hex – Incoming source number. Can be any format.

• num_chars – Total number of characters that will be returned. Default is two.

Returns String, uppercase, zero padded to the num_chars.

Example usage: Send “c” as source_hex, returns “0C”.

static power_to_on_off(power: float, max_period: int = 20)→ Tuple[int, int]
Convert a float value to on/off times.

static pwm32_to_hex_string(source_int: int)→ str
Convert a PWM32 value to hex.

static pwm32_to_int(source_int: int)→ int
Convert a PWM32 value to int.

static pwm8_to_hex_string(source_int: int)→ str
Convert an int to a PWM8 string.

static pwm8_to_int(source_int: int)→ int
Convert a PWM8 value to int.

static race(futures: Dict[asyncio.futures.Future, str], loop)
Return key of first future and cancel others.

static set_in_dict(dic, key_path, value)
Set a value in a nested dict-like object based on an iterable of nested keys.

Parameters

214 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

• dic – Nested dict of dicts to set the value in.

• key_path – Iterable of the path to the key of the value to set.

• value – Value to set.

static string_to_class(class_string: str)→ Callable[..., Any]
Convert a string like mpf.core.events.EventManager into a Python class.

Parameters class_string (str) – The input string

Returns A reference to the python class object

This function came from here: http://stackoverflow.com/questions/452969/
does-python-have-an-equivalent-to-java-class-forname

static string_to_gain(gain_string: str)→ float
Convert string to gain.

Decode a string containing either a gain value (0.0 to 1.0) or a decibel value (-inf to 0.0) into a gain value
(0.0 to 1.0).

Parameters gain_string – The string to convert to a gain value

Returns Float containing a gain value (0.0 to 1.0)

static string_to_list(string: Union[str, List[str], None])→ List[str]
Convert a comma-separated and/or space-separated string into a Python list.

Parameters string – The string you’d like to convert.

Returns A python list object containing whatever was between commas and/or spaces in the
string.

static string_to_lowercase_list(string: str)→ List[str]
Convert a comma-separated and/or space-separated string into a Python list.

Each item in the list has been converted to lowercase.

Parameters string – The string you’d like to convert.

Returns A python list object containing whatever was between commas and/or spaces in the
string, with each item converted to lowercase.

static string_to_ms(time_string: str)→ int
Decode a string of real-world time into an int of milliseconds.

Example inputs:

200ms 2s None

If no “s” or “ms” is provided, this method assumes “milliseconds.”

If time is ‘None’ or a string of ‘None’, this method returns 0.

Returns Integer. The examples listed above return 200, 2000 and 0, respectively

static string_to_secs(time_string: str)→ float
Decode a string of real-world time into an float of seconds.

See ‘string_to_ms’ for a description of the time string.

7.3. API Reference 215

http://stackoverflow.com/questions/452969/does-python-have-an-equivalent-to-java-class-forname
http://stackoverflow.com/questions/452969/does-python-have-an-equivalent-to-java-class-forname

MPF Documentation Developer Documentation, Release 0.50.22

data_manager

class mpf.core.data_manager.DataManager(machine, name, min_wait_secs=1)
Bases: mpf.core.mpf_controller.MpfController

Handles key value data loading and saving for the machine.

Methods & Attributes

The data_manager has the following methods & attributes available. Note that methods & attributes inherited
from the base class are not included here.

configure_logging(logger: str, console_level: str = ’basic’, file_level: str = ’basic’)
Configure logging.

Parameters

• logger – The string name of the logger to use.

• console_level – The level of logging for the console. Valid options are “none”,
“basic”, or “full”.

• file_level – The level of logging for the console. Valid options are “none”, “basic”,
or “full”.

debug_log(msg: str, *args, **kwargs)→ None
Log a message at the debug level.

Note that whether this message shows up in the console or log file is controlled by the settings used with
configure_logging().

error_log(msg: str, *args, context=None, **kwargs)→ None
Log a message at the error level.

These messages will always be shown in the console and the log file.

get_data(section=None)
Return the value of this DataManager’s data.

Parameters section – Optional string name of a section (dictionary key) for the data you
want returned. Default is None which returns the entire dictionary.

ignorable_runtime_exception(msg: str)→ None
Handle ignorable runtime exception.

During development or tests raise an exception for easier debugging. Log an error during production.

info_log(msg: str, *args, context=None, **kwargs)→ None
Log a message at the info level.

Whether this message shows up in the console or log file is controlled by the settings used with config-
ure_logging().

raise_config_error(msg, error_no, *, context=None)
Raise a ConfigFileError exception.

save_all(data)
Update all data.

warning_log(msg: str, *args, context=None, **kwargs)→ None
Log a message at the warning level.

These messages will always be shown in the console and the log file.

216 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

delay_manager

class mpf.core.delays.DelayManager(registry: mpf.core.delays.DelayManagerRegistry)
Bases: mpf.core.mpf_controller.MpfController

Handles delays for one object.

By default, a machine-wide instance is created and available via self.machine.delay.

Individual modes also have Delay Managers which can be accessed in mode code via self.delay. (Delays
in mode-based delay managers are automatically removed when the mode stops.)

Methods & Attributes

The delay_manager has the following methods & attributes available. Note that methods & attributes inherited
from the base class are not included here.

add(ms: int, callback: Callable[..., None], name: str = None, **kwargs)→ str
Add a delay.

Parameters

• ms – The number of milliseconds you want this delay to be for.

• callback – The method that is called when this delay ends.

• name – String name of this delay. This name is arbitrary and only used to identify the
delay later if you want to remove or change it. If you don’t provide it, a UUID4 name will
be created.

• **kwargs – Any other (optional) kwarg pairs you pass will be passed along as kwargs
to the callback method.

Returns String name or UUID4 of the delay which you can use to remove it later.

add_if_doesnt_exist(ms: int, callback: Callable[..., None], name: str, **kwargs)→ str
Add a delay only if a delay with that name doesn’t exist already.

Parameters

• ms – Int of the number of milliseconds you want this delay to be for.

• callback – The method that is called when this delay ends.

• name – String name of this delay. This name is arbitrary and only used to identify the
delay later if you want to remove or change it.

• **kwargs – Any other (optional) kwarg pairs you pass will be passed along as kwargs
to the callback method.

Returns String name of the delay which you can use to remove it later.

check(delay: str)→ bool
Check to see if a delay exists.

Parameters delay – A string of the delay you’re checking for.

Returns True if the delay exists. False otherwise.

clear()→ None
Remove (clear) all the delays associated with this DelayManager.

configure_logging(logger: str, console_level: str = ’basic’, file_level: str = ’basic’)
Configure logging.

7.3. API Reference 217

MPF Documentation Developer Documentation, Release 0.50.22

Parameters

• logger – The string name of the logger to use.

• console_level – The level of logging for the console. Valid options are “none”,
“basic”, or “full”.

• file_level – The level of logging for the console. Valid options are “none”, “basic”,
or “full”.

debug_log(msg: str, *args, **kwargs)→ None
Log a message at the debug level.

Note that whether this message shows up in the console or log file is controlled by the settings used with
configure_logging().

error_log(msg: str, *args, context=None, **kwargs)→ None
Log a message at the error level.

These messages will always be shown in the console and the log file.

ignorable_runtime_exception(msg: str)→ None
Handle ignorable runtime exception.

During development or tests raise an exception for easier debugging. Log an error during production.

info_log(msg: str, *args, context=None, **kwargs)→ None
Log a message at the info level.

Whether this message shows up in the console or log file is controlled by the settings used with config-
ure_logging().

raise_config_error(msg, error_no, *, context=None)
Raise a ConfigFileError exception.

remove(name: str)
Remove a delay by name.

Removing a delay prevents the callback from being called and cancels the delay.

Parameters name – String name of the delay you want to remove. If there is no delay with this
name, that’s ok. Nothing happens.

reset(ms: int, callback: Callable[..., None], name: str, **kwargs)→ str
Reset a delay.

Resetting will first delete the existing delay (if it exists) and then add new delay with the new settings. If
the delay does not exist, that’s ok, and this method is essentially the same as just adding a delay with this
name.

Parameters

• ms – The number of milliseconds you want this delay to be for.

• callback – The method that is called when this delay ends.

• name – String name of this delay. This name is arbitrary and only used to identify the
delay later if you want to remove or change it. If you don’t provide it, a UUID4 name will
be created.

• **kwargs – Any other (optional) kwarg pairs you pass will be passed along as kwargs
to the callback method.

Returns String name or UUID4 of the delay which you can use to remove it later.

218 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

run_now(name: str)
Run a delay callback now instead of waiting until its time comes.

This will cancel the future running of the delay callback.

Parameters name – Name of the delay to run. If this name is not an active delay, that’s fine.
Nothing happens.

warning_log(msg: str, *args, context=None, **kwargs)→ None
Log a message at the warning level.

These messages will always be shown in the console and the log file.

delay_manager_registry

class mpf.core.delays.DelayManagerRegistry(machine: MachineController)
Bases: object

Keeps references to all DelayManager instances.

Methods & Attributes

The delay_manager_registry has the following methods & attributes available. Note that methods & attributes
inherited from the base class are not included here.

add_delay_manager(delay_manager: mpf.core.delays.DelayManager)→ None
Add a delay manager to the list.

Parameters delay_manager – The DelayManager instance you’re adding to this registry.

7.4 Automated Testing

The MPF dev team are strong believers in automated testing, and we use a test-driven development (TDD) process for
developing MPF itself. (At the time of this writing, there are over 800 unit tests for MPF and MPF-MC, each which
contain dozens of individual tests.)

We have extended Python’s built-in unittest TestCase class for MPF-specific tests, including mocking critical internal
elements and adding assertion methods for MPF features.

You can run built-in tests to test MPF itself or extend them if you think you found a bug or if you’re adding features to
MPF. We have also built TestCase classes you can use to write unittests for your own machine. Read on for details:

7.4.1 How to run MPF unittests

Once MPF is installed, you can run some automated tests to make sure that everything is working. To do this, open a
command prompt, and then type the following command and then press <enter>:

python3 -m unittest discover mpf/tests

When you do this, you should see a bunch of dots on the screen (one for each test that’s run), and then when it’s done,
you should see a message showing how many tests were run and that they were successful. The whole process should
take less a minute or so.

(If you see any messages about some tests taking more than 0.5s, that’s ok.)

The important thing is that when the tests are done, you should have a message like this:

7.4. Automated Testing 219

https://en.wikipedia.org/wiki/Test-driven_development

MPF Documentation Developer Documentation, Release 0.50.22

Ran 587 tests in 27.121s

OK

C:\>

Note that the number of tests is changing all the time, so it probably won’t be exactly 587. And also the time they took
to run will be different depending on how fast your computer is.

These tests are the actual tests that the developers of MPF use to test MPF itself. We wrote all these tests to make sure
that updates and changes we add to MPF don’t break things. :) So if these tests pass, you know your MPF installation
is solid.

Remember though that MPF is actually two separate parts, the MPF game engine and the MPF media controller. The
command you run just tested the game engine, so now let’s test the media controller. To do this, run the following
command (basically the same thing as last time but with an “mc” added to the end, like this):

python3 -m unittest discover mpfmc/tests

(Note that mpfmc does not have a dash in it, like it did when you installed it via pip.)

When you run the MPF-MC tests, you should see a graphical window pop up on the screen, and many of the tests will
put graphics and words in that window. Also, some of the tests include audio, so if your speakers are on you should
hear some sounds at some point.

These tests take significantly longer (maybe 8x) than the MPF tests, but when they’re done, that graphical window
should close, and you’ll see all the dots in your command window and a note that all the tests were successful.

Notes about the MPF-MC tests:

• These tests create a window on the screen and then just re-use the same window for all tests (to save time). So
don’t worry if it looks like the window content is scaled weird or blurry or doesn’t fill the entire window.

• Many of these tests are used to test internal workings of the media controller itself, so there will be lots of time
when the pop up window is blank or appears frozen since the tests are testing non-visual things.

• The animation and transition tests include testing functionality to stop, restart, pause, and skip frames. So if
things look “jerky” in the tests, don’t worry, that doesn’t mean your computer is slow, it’s just how the tests
work! :)

7.4.2 Writing Unit Tests for MPF

todo

7.4.3 Writing Custom Tests for your Machine

As we already mentioned, the creators of MPF are HUGE believers in the value of automated testing. To that end,
MPF includes everything you need to write automated tests that test the logical functionality of your machine. These
tests are extremely valuable even if your game is just based on config files.

For example, you can write a test that simulates starting a game, launching a ball, hitting a sequence of switches, and
then verifying that a certain mode is running, or a light is the right color, or an achievement group is in the proper
state, etc. Then you can advance the time to timeout a mode and verify that the mode as stopped, etc, etc.

When you first start building your MPF config, you might think, “What’s the point?”. . . especially with some of the
more simple tests. However your MPF config files will get complex pretty quickly, and often times you’ll think you
have some mode done and working perfectly, but then a month later you change something that seems unrelated which

220 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

ends up breaking it. Unfortunately this usually happens without you knowing it, and by the time you realize that
something broke, more times has passed and it’s hard to figure out what broke what.

So this is where unit tests come in! :)

If you write simple unit tests that test each new thing you add to an MPF config file, then over time you’ll end up with
a huge library of tests for your game. If you get in the habit of running your tests often, then you’ll know right away
if a change that you made broke something. (And you’ll also know when everything is ok when all your tests pass
again!)

Tutorial for writing your own tests

We have a complete tutorial which walks you through writing tests for your own machine. This tutorial conveniently
follows the general MPF tutorial at docs.missionpinball.org. Each step here matches the step with the same number
there. (Just make sure you’ll looking at the same version of the documentation in both places.)

In the general MPF tutorial, each step builds on the previous to add more features to the config files for the tutorial
project. In the unit test tutorial (what you’re reading here), each step shows you how to write the unit tests which test
the new features you just added to the tutorial machine.

You can follow along and learn here:

Testing Tutorial Step 1. Installing MPF

Step 1 of the MPF Tutorial is just about getting MPF installed, so there’s nothing to do yet for testing. Really we just
include Step 1 here because if we didn’t it would be confusing as to why the tutorial starts on Step 2. :)

Note that if you download the MPF Example repo, the tutorial folder in there which contains all the complete tutorial
files for every step also includes test folders with all the complete tests.

Testing Tutorial Step 2. Create your machine folder

Step 2 of the MPF Tutorial is where you create your machine folder and get MPF up and running with an empty config.
Since it ends with MPF running and the attract mode being active, we can actually write a test for it!

Here are the steps to take:

1. Create a “tests” folder in your machine folder

First, create a folder called tests in your machine folder. This would be alongside the other folders in there, which
will be “config” (created in the MPF tutorial), as well as “logs” and “data” which were created automatically by MPF
the first time it ran.

2. Add an empty “__init__.py” file

Next, inside your new tests folder, create a blank file called __init__.py. (That’s two underscores, then the word
“init”, then two more underscores, then “.py”.) This file should be totally blank. (It just needs to exist.) This file is
needed to let the Python test runner find and load the tests from this folder.

7.4. Automated Testing 221

docs.missionpinball.org
http://docs.missionpinball.org/en/dev/tutorial/1_install_mpf.html
https://github.com/missionpinball/mpf-examples
http://docs.missionpinball.org/en/dev/tutorial/2_creating_a_new_machine.html

MPF Documentation Developer Documentation, Release 0.50.22

3. Add a test file

Next you need to add a Python file which actually holds your tests. You can name this file whatever you want as long
as it starts with “test”. (The reason for starting it with “test” is also so that the Python test runner knows that this file
contains tests, allowing it to automatically find and run tests from it.)

For now let’s call it test_step_2.py.

Open that file and add the following lines to it: (If you are interested in what all this means, then read on below the
file. Otherwise you can skip down to Step 4.)

"""Contains tests for Step 2 of the MPF tutorial."""

from mpf.tests.MpfMachineTestCase import MpfMachineTestCase

class TestTutorialMachine(MpfMachineTestCase):

"""Contains tests for the MPF machine config"""

def test_step_2_mpf_startup(self):
"""Tests Step 2 of the tutorial"""

At this point, the machine config is blank, which means that other
than MPF starting and the attract mode running, nothing is really
happening. So let's just check that the attract mode is running and
that's it.

self.assertModeRunning('attract')

asserts that a mode called 'attract' is running, and fails the test
if not.

So what’s this file actually doing?

The import line just imports the base class we use for MPF machine tests. (More details on that is covered in the
Testing Class API page).

Our specific class name TestTutorialMachine can be whatever you want. Again just make sure it starts with
“Test” in order for the test runner to find out.

Our specific method is called test_step_2_mpf_startup(). (Also it has to start with “test”). When the tests
are run each method represents a separate “run” of MPF. The test runner will start up MPF and get it all up and
running, and then it will move through the code in the test method, then it will cleanly shut down MPF when it’s done.
If there are multiple test methods, then the test running will start and stop MPF multiple times. The key is that each
test method is run against a “fresh” MPF copy.

These test methods will also load the machine config files (just like if the command mpf was run the regular way).

Anyway, in our test method, we have the only actual line that does anything:

self.assertModeRunning('attract')

This just tests (“asserts”) that a mode called “attract” is running. There are all sorts of MPF-specific assertion methods
which we’ll cover in later steps of this tutorial.

222 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

4. Run your test

You can run your tests via the command prompt from your machine folder. (In other words, the same place where you
run mpf to run your machine.)

The exact command to run is python -m unittest. This should produce output similar to the following:

C:\pinball\your_machine>python -m unittest
C:\Python34\lib\imp.py:32: PendingDeprecationWarning: the imp module is deprecated in
→˓favour of importlib; see the module's documentation for alternative uses
PendingDeprecationWarning)

.
--
Ran 1 test in 0.734s

OK

C:\pinball\your_machine>

That warning about the deprecation can be ignored (if you even have it.. you might not). The important thing is the
message towards the bottom: “Ran 1 test in 0.734s” and the “OK” below it. That means your test passed!

5. Check out a failed test

When you’re writing unit tests, you’ll end up dealing with failed tests a lot! So let’s purposefully change the test so
it fails. In this case, change the line which asserts a mode called “attract” is running to look for a mode called “foo”
instead, like this:

self.assertModeRunning('foo')

Save the file and rerun the tests and you should see results like this:

C:\pinball\your_machine>python -m unittest
C:\Python34\lib\imp.py:32: PendingDeprecationWarning: the imp module is deprecated in
→˓favour of importlib; see the module's documentation for alternative uses
PendingDeprecationWarning)

F
==
FAIL: test_mpf_starts (tests.test_step_2.TestTutorialMachine)
Tests Step 2 of the tutorial
--
Traceback (most recent call last):

File "C:\pinball\your_machine\tests\test_step_2.py", line 18, in test_mpf_starts
self.assertModeRunning('foo')

File "C:\Python34\lib\site-packages\mpf\tests\MpfTestCase.py", line 576, in
→˓assertModeRunning

raise AssertionError("Mode {} not known.".format(mode_name))
AssertionError: Mode foo not known.

--
Ran 1 test in 0.594s

FAILED (failures=1)

C:\pinball\your_machine>

7.4. Automated Testing 223

MPF Documentation Developer Documentation, Release 0.50.22

Note that we see the test run failed, with one failure, and that we can scroll up and see the specific name of the test
that failed along with the line that failed, and information about the failure. (In this case it tells us that the mode “foo”
is not known.)

So to get this test to work, you either need to change your MPF config to start a mode called “foo”, or you need to
change the test back to looking for a mode called “attract”. :)

What if it didn’t work?

If the unit tests don’t work for you, there are a few things you can try.

If you get some kind of loading error or config error, make sure you’re running python -m unittest from your
machine folder (not from the “tests” folder).

If you get a message about 0 tests run, make sure you have that empty __init__.py in your tests folder.

And if you get some weird error that you can’t figure out, then post a message to the MPF Google Group.

7.4.4 Fuzz Testing

todo

7.5 Extending MPF

These guides explain how to setup a dev environment for extending and adding to MPF itself, and how to add various
components to MPF.

7.5.1 Setting up your MPF Dev Environment

If you want to work on the core MPF or MPF-MC code, you have to install MPF and MPF-MC a bit differently than
the normal process.

Why? Because normally when you install MPF and MPF-MC via pip, they get installed as Python packages into your
Python/Lib/site-packages folder, and that location is not too conducive to editing MPF source code since
it’s in a deep random location. Also, if you ever ran pip again to update your MPF installation, you would potentially
overwrite any changes you made.

Instead, you need to install MPF and MPF-MC in “developer” (also known as “editable”) mode. This mode will let
you run MPF and MPF-MC from the folder of your choice, and will allow code changes or additions you make to be
immediately available whenever you run MPF.

1. Install a git client

MPF is cross-platform and runs the same on Mac, Windows, or Linux. So any changes or additions you make should
work on all platforms.

If you’re on Windows or Mac, the easiest way to get a git client installed is to use the GitHub Desktop app. This app
will also install the git command line tools.

224 Chapter 7. Index

https://groups.google.com/forum/#!forum/mpf-users
https://desktop.github.com/

MPF Documentation Developer Documentation, Release 0.50.22

2. Clone the MPF and/or MPF-MC repo(s)

Clone the mpf repository and its submodules :

git clone --recursive https://github.com/missionpinball/mpf.git

Same thing for the mpf-mc repository :

git clone --recursive https://github.com/missionpinball/mpf-mc.git

If you’re using the GitHub Desktop app, you can also browse to the repos on GitHub and click the green “Clone or
Download” button, and then click the “Open in Desktop” link. That will pop up a box that prompts you to pick a folder
for the local codebase.

Then inside that folder, you’ll end up with an mpf folder for MPF and mpf-mc folder for MPF-MC.

3. Install MPF / MPF-MC in “developer” mode

Create a “virtualenv” for your MPF development in a mpf-env directory (Note : if you don’t have virtualenv installed,
you can get it via pip by running pip3 install virtualenv.

Using virtualenv lets you keep all the other Python packages MPF needs (pyserial, pyyaml, kivy, etc.) together in
a “virtual” environment that you’ll use for MPF and helps keep everything in your Python environment cleaner in
general.

Create a new virtualenv called “mpf-venv” (or whatever you want to name it) like this:

virtualenv -p python3 mpf-venv

Then enter the newly-created virtualenv:

source mpf-venv/bin/activate

Each time you’ll work with your MPF development version you’ll have to switch to this environment. Note: in this
environment, thanks to the “-p python3” option of virtualenv, the version of Python and pip is 3.x automatically.

Next you’ll install MPF and MPF-MC. This is pretty much like a regular install, except that you’ll also use the -e
command line option which means these packages will be installed in “editable” mode.

Install mpf and mpf-mc like this:

pip install -e mpf
pip install -e mpf-mc

You should now be done, and you can verify that everyething is installed properly via:

mpf --version

Note : you could also install mpf and mpf-mc in your global environment using sudo pip3 install -e mpf
and sudo pip3 install -e mpf-mc, or in your user environment using pip3 install --user -e
mpf and pip3 install --user -e mpf-mc.

4. Make your changes

Be sure to add your name to the AUTHORS file in the root of the MPF or MPF-MC repo!

7.5. Extending MPF 225

MPF Documentation Developer Documentation, Release 0.50.22

5. Write / update unit tests

We make heavy use of unit tests to ensure that future changes don’t break existing functionality. So write new unit
tests to cover whatever you just wrote, and be sure to rerun all the unit tests to make sure your changes or additions
didn’t break anything else.

More information on creating and running MPF unit tests is here.

6. Submit a pull request

If your change fixes an open issue, reference that issue number in the comments, like “fixes #123”.

7.5.2 Writing Plugins for MPF

todo

7.5.3 Developing your own hardware interface for MPF

todo

7.5.4 Annotating events for MPF docs

You usually write the following to post an event in code:

this event is posted when something awesome happens
self.machine.events.post("your_awesome_event", reason=what_happened)

This will work. However, nobody will know about your shiny new event. Therefore, we want to document it for our
users. Since it would be dublicate work to document the event in code and in the docs, we use a custom docblock
annotation:

self.machine.events.post("your_awesome_event", reason=what_happened)
'''event: your_awesome_event

desc: This event is posted when something awesome happens. We suggest that
you play a loud sound and show some flashy slides when this happens.

args:
reason: The reason for this awesomeness is stated here.

'''

The event will be automatically added to the event reference on the next update of the documentation.

7.6 BCP Protocol Specification

This document describes the Backbox Control Protocol, (or “BCP”), a simple, fast protocol for communications
between an implementation of a pinball game controller and a multimedia controller.

Note: BCP is how the MPF core engine and the MPF media controller communicate.

226 Chapter 7. Index

http://docs.missionpinball.org/en/latest/events/index.html

MPF Documentation Developer Documentation, Release 0.50.22

BCP transmits semantically relevant information and attempts to isolate specific behaviors and identifiers on both
sides. i.e., the pin controller is responsible for telling the media controller “start multiball mode”. The pin controller
doesn’t care what the media controller does with that information, and the media controller doesn’t care what happened
on the pin controller that caused the multiball mode to start.

BCP is versioned to prevent conflicts. Future versions of the BCP will be designed to be backward compatible to every
degree possible. The reference implementation uses a raw TCP socket for communication. On localhost the latency is
usually sub-millisecond and on LANs it is under 10 milliseconds. That means that the effect of messages is generally
under 1/100th of a second, which should be considered instantaneous from the perspective of human perception.

It is important to note that this document specifies the details of the protocol itself, not necessarily the behaviors of
any specific implementations it connects. Thus, there won’t be details about fonts or sounds or images or videos or
shaders here; those are up to specific implementation being driven.

Warning: Since the pin controller and media controller are both state machines synchronized through the use of
commands, it is possible for the programmer to inadvertently set up infinite loops. These can be halted with the
“reset” command or “hello” described below.

7.6.1 Background

While the BCP protocol was created as part of the MPF project, the intention is that BCP is an open protocol that
could connect any pinball controller to any media controller.

7.6.2 Protocol Format

• Commands are human-readable text in a format similar to URLs, e.g. command?
parameter1=value¶meter2=value

• Command characters are encoded with the utf-8 character encoding. This allows ad-hoc text for languages that
use characters past ASCII-7 bit, such as Japanese Kanji.

• Command and parameter names are whitespace-trimmed on both ends by the recipient

• Commands are case-insensitive

• Parameters are optional. If present, a question mark separates the command from its parameters

• Parameters are in the format name=value

• Parameter names are case-insensitive

• Parameter values are case-sensitive

• Simple parameter values are prefixed with a string that indicates their data type: (int:, float:, bool:,
NoneType:). For example, the integer 5 would appear in the command string as int:5.

• When a command includes one or more complex value types (list or dict) all parameters are encoded using
JSON and the resulting encoded value is assigned to the json: parameter.

• Parameters are separated by an ampersand (&)

• Parameter names and their values are escaped using percent encoding as necessary; (details here).

• Commands are terminated by a line feed character (\n). Carriage return characters (\r) should be tolerated but
are not significant.

• A blank line (no command) is ignored

• Commands beginning with a hash character (#) are ignored

7.6. BCP Protocol Specification 227

https://en.wikipedia.org/wiki/Percent-encoding

MPF Documentation Developer Documentation, Release 0.50.22

• If a command passes unknown parameters, the recipient should ignore them.

• The pinball controller and the media controller must be resilient to network problems; if a connection is lost, it
can simply re-open it to resume operation. There is no requirement to buffer unsendable commands to transmit
on reconnection.

• Once initial handshaking has completed on the first connection, subsequent re-connects do not have to handshake
again.

• An unrecognized command results in an error response with the message “unknown command”

In all commands referenced below, the \n terminator is implicit. Some characters in parameters such as spaces would
really be encoded as %20 (space) in operation, but are left unencoded here for clarity.

7.6.3 Initial Handshake

When a connection is initially established, the pinball controller transmits the following command:

hello?version=1.0

. . . where 1.0 is the version of the Backbox protocol it wants to speak. The media controller may reply with one of two
responses:

hello?version=1.0

. . . indicating that it can speak the protocol version named, and reporting the version it speaks, or

error?message=unknown protocol version

. . . indicating that it cannot. How the pin controller handles this situation is implementation-dependent.

7.6.4 BCP commands

The following BCP commands have been defined (and implemented) in MPF:

ball_end (BCP command)

Indicates the ball has ended. Note that this does not necessarily mean that the next player’s turn will start, as this
player may have an extra ball which means they’ll shoot again.

Origin

Pin controller

Parameters

None

Response

None

228 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

ball_start (BCP command)

Indicates a new ball has started. It passes the player number (1, 2, etc.) and the ball number as parameters. This
command will be sent every time a ball starts, even if the same player is shooting again after an extra ball.

Origin

Pin controller

Parameters

player_num

Type: int

The player number.

ball

Type: int

The ball number.

Response

None

device (BCP command)

Origin

Pin controller or media controller

Parameters

type

Type: string

The type/class of device (ex: coil).

name

Type: string

The name of the device.

7.6. BCP Protocol Specification 229

MPF Documentation Developer Documentation, Release 0.50.22

changes

Type: tuple (attribute name, old value, new value)

The change to the device state.

state

Type: varies (depending upon device type)

The device state.

Response

None

error (BCP command)

This is a command used to convey error messages back to the origin of a command.

Origin

Pin controller or media controller

Parameters

message

Type: string

The error message.

command

Type: string

The command that was invalid and caused the error.

Response

None

goodbye (BCP command)

Lets one side tell the other than it’s shutting down.

230 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

Origin

Pin controller or media controller

Parameters

None

Response

None

hello (BCP command)

This is the initial handshake command upon first connection. It sends the BCP protocol version that the origin con-
troller speaks.

Origin

Pin controller or media controller

Parameters

version

Type: string

The BCP communication specification version implemented in the controller (ex: 1.0).

controller_name

Type: string

The name of the controller (ex: Mission Pinball Framework).

controller_version

Type: string

The version of the controller (ex: 0.33.0).

Response

When received by the media controller, this command automatically triggers a hard “reset”. If the pin controller
is sending this command, the media controller will respond with either its own “hello” command, or the error “un-
known protocol version.” The pin controller should never respond to this command when it receives it from the media
controller; that would trigger an infinite loop.

7.6. BCP Protocol Specification 231

MPF Documentation Developer Documentation, Release 0.50.22

machine_variable (BCP command)

This is a generic “catch all” which sends machine variables to the media controller any time they change. Machine
variables are like player variables, except they’re maintained machine-wide instead of per-player or per-game. Since
the pin controller will most likely track hundreds of variables (with many being internal things that the media controller
doesn’t care about), it’ s recommended that the pin controller has a way to filter which machine variables are sent to
the media controller.

Origin

Pin controller

Parameters

name

Type: string

This is the name of the machine variable.

value

Type: Varies depending upon the variable type.

This is the new value of the machine variable.

prev_value

Type: Varies depending upon the variable type.

This is the previous value of the machine variable.

change

Type: Varies depending upon the variable type.

If the machine variable just changed, this will be the amount of the change. If it’s not possible to determine a numeric
change (for example, if this machine variable is a string), then this change value will be set to the boolean True.

Response

None

mode_start (BCP command)

A game mode has just started. The mode is passed via the name parameter, and the mode’s priority is passed as an
integer via the priority.

232 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

Origin

Pin controller

Parameters

name

Type: string

The mode name.

priority

Type: int

The mode priority.

Response

None

mode_stop (BCP command)

Indicates the mode has stopped.

Origin

Pin controller

Parameters

name

Type: string

The mode name.

Response

None

7.6. BCP Protocol Specification 233

MPF Documentation Developer Documentation, Release 0.50.22

monitor_start (BCP command)

New in version 0.33.

Request from the media controller to the pin controller to begin monitoring events in the specified category. Events
will not be automatically sent to the media controller from the pin controller via BCP unless they are requested using
the monitor_start or register_trigger commands.

Origin

Media controller

Parameters

category

Single string value, type: one of the following options: events, devices, machine_vars, player_vars, switches, modes,
ball, or timer.

The value of category determines the category of events to begin monitoring. Options for category are:

• events - All events in the pin controller

• devices - All device state changes

• machine_vars - All machine variable changes

• player_vars - All player variable changes

• switches - All switch state changes

• modes - All mode events (start, stop)

• core_events - Core MPF events (ball handing, player turn, etc.)

Response

None

monitor_stop (BCP command)

New in version 0.33.

Request from the media controller to the pin controller to stop monitoring events in the specified category. Once a
monitor has been started, events will continue to be automatically sent to the media controller from the pin controller
via BCP until they are stopped using the monitor_stop or remove_trigger commands.

Origin

Media controller

234 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

Parameters

category

Single string value, type: one of the following options: events, devices, machine_vars, player_vars, switches, modes,
ball, or timer.

The value of category determines the category of events to stop monitoring. Options for category are:

• events - All events in the pin controller

• devices - All device state changes

• machine_vars - All machine variable changes

• player_vars - All player variable changes

• switches - All switch state changes

• modes - All mode events (start, stop)

• core_events - Core MPF events (ball handing, player turn, etc.)

Response

None

player_added (BCP command)

A player has just been added, with the player number passed via the player_num parameter. Typically these commands
only occur during Ball 1.

Origin

Pin controller

Parameters

player_num

Type: int

The player number just added.

Response

None

player_turn_start (BCP command)

A new player’s turn has begun. If a player has an extra ball, this command will not be sent between balls. However, a
new ball_start command will be sent when the same player’s additional balls start.

7.6. BCP Protocol Specification 235

MPF Documentation Developer Documentation, Release 0.50.22

Origin

Pin controller

Parameters

player_num

Type: int

The player number.

Response

None

player_variable (BCP command)

This is a generic “catch all” which sends player-specific variables to the media controller any time they change. Since
the pin controller will most likely track hundreds of variables per player (with many being internal things that the media
controller doesn’t care about), it’s recommended that the pin controller has a way to filter which player variables are
sent to the media controller. Also note the parameter player_num indicates which player this variable is for (starting
with 1 for the first player). While it’s usually the case that the player_variable command will be sent for the player
whose turn it is, that’s not always the case. (For example, when a second player is added during the first player’s ball,
the second player’s default variables will be initialized at 0 and a player_variable event for player 2 will be sent even
though player 1 is up.

Origin

Pin controller

Parameters

name

Type: string

This is the name of the player variable.

player_num

Type: int

This is the player number the variable is for (starting with 1 for the first player).

236 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

value

Type: Varies depending upon the variable type.

This is the new value of the player variable.

prev_value

Type: Varies depending upon the variable type.

This is the previous value of the player variable.

change

Type: Varies depending upon the variable type.

If the player variable just changed, this will be the amount of the change. If it’s not possible to determine a numeric
change (for example, if this player variable is a string), then this change value will be set to the boolean True.

Response

None

register_trigger (BCP command)

Request from the media controller to the pin controller to register an event name as a trigger so it will be sent via BCP
to the media controller whenever the event is posted in MPF.

Origin

Media controller

Parameters

event

Type: string

This is the name of the trigger event to register with the pin controller.

Response

None

7.6. BCP Protocol Specification 237

MPF Documentation Developer Documentation, Release 0.50.22

remove_trigger (BCP command)

New in version 0.33.

Request from the media controller to the pin controller to cancel/deregister an event name as a trigger so it will no
longer be sent via BCP to the media controller whenever the event is posted in MPF.

Origin

Media controller

Parameters

event

Type: string

This is the name of the trigger event to cancel/deregister with the pin controller.

Response

None

reset (BCP command)

This command notifies the media controller that the pin controller is in the process of performing a reset. If necessary,
the media controller should perform its own reset process. The media controller must respond with a reset_complete
command when finished.

Origin

Pin controller

Parameters

None

Response

reset_complete when reset process has finished

reset_complete (BCP command)

This command notifies the pin controller that reset process is now complete. It must be sent in response to receiving a
reset command.

238 Chapter 7. Index

MPF Documentation Developer Documentation, Release 0.50.22

Origin

Media controller

Parameters

None

Response

None

switch (BCP command)

Indicates that the other side should process the changed state of a switch. When sent from the media controller to
the pin controller, this is typically used to implement a virtual keyboard interface via the media controller (where the
player can activate pinball machine switches via keyboard keys for testing). For example, for the media controller to
tell the pin controller that the player just pushed the start button, the command would be:

switch?name=start&state=1

followed very quickly by

switch?name=start&state=0

When sent from the pin controller to the media controller, this is used to send switch inputs to things like video modes,
high score name entry, and service menu navigation. Note that the pin controller should not send the state of every
switch change at all times, as the media controller doesn’t need it and that would add lots of unnecessary commands.
Instead the pin controller should only send switches based on some mode of operation that needs them. (For example,
when the video mode starts, the pin controller would start sending the switch states of the flipper buttons, and when
the video mode ends, it would stop.)

Origin

Pin controller or media controller

Parameters

name

Type: string

This is the name of the switch.

state

Type: int

The new switch state: 1 for active, and 0 for inactive.

7.6. BCP Protocol Specification 239

MPF Documentation Developer Documentation, Release 0.50.22

Response

None

trigger (BCP command)

This command allows the one side to trigger the other side to do something. For example, the pin controller might
send trigger commands to tell the media controller to start shows, play sound effects, or update the display. The media
controller might send a trigger to the pin controller to flash the strobes at the down beat of a music track or to pulse
the knocker in concert with a replay show.

Origin

Pin controller or media controller

Parameters

name

Type: string

This is the name of the trigger.

Note: Trigger messages may contain any additional parameters as needed by the application.

Response

Varies

7.7 Method & Class Index

240 Chapter 7. Index

Index

A
a_side_busy (mpf.platforms.snux.SnuxHardwarePlatform

attribute), 134
Accelerometer (class in mpf.devices.accelerometer),

49
accept_connection()

(mpf.tests.MpfBcpTestCase.MockBcpClient
method), 148

Accrual (class in mpf.devices.logic_blocks), 50
Achievement (class in mpf.devices.achievement), 52
AchievementGroup (class in

mpf.devices.achievement_group), 51
activate() (mpf.devices.diverter.Diverter method),

63
active (mpf.core.mode.Mode attribute), 204
active (mpf.modes.attract.code.attract.Attract at-

tribute), 97
active (mpf.modes.bonus.code.bonus.Bonus attribute),

99
active (mpf.modes.carousel.code.carousel.Carousel

attribute), 102
active (mpf.modes.credits.code.credits.Credits at-

tribute), 104
active (mpf.modes.game.code.game.Game attribute),

106
active (mpf.modes.high_score.code.high_score.HighScore

attribute), 109
active (mpf.modes.match.code.match.Match attribute),

111
active (mpf.modes.service.code.service.Service at-

tribute), 114
active (mpf.modes.tilt.code.tilt.Tilt attribute), 116
active_sequences (mpf.devices.shot.Shot attribute),

90
add() (mpf.core.delays.DelayManager method), 217
add() (mpf.devices.timer.Timer method), 94
add_a_ball() (mpf.devices.multiball.Multiball

method), 78

add_async_handler()
(mpf.core.events.EventManager method),
31

add_ball() (mpf.devices.playfield.Playfield method),
79

add_ball_to_device()
(mpf.platforms.smart_virtual.SmartVirtualHardwarePlatform
method), 133

add_captured_ball()
(mpf.core.ball_controller.BallController
method), 29

add_color() (mpf.core.rgb_color.RGBColor static
method), 210

add_color() (mpf.core.rgba_color.RGBAColor static
method), 208

add_credit() (mpf.modes.credits.code.credits.Credits
method), 104

add_delay_manager()
(mpf.core.delays.DelayManagerRegistry
method), 219

add_handler() (mpf.core.events.EventManager
method), 31

add_handler() (mpf.devices.switch.Switch method),
93

add_if_doesnt_exist()
(mpf.core.delays.DelayManager method),
217

add_incoming_ball()
(mpf.devices.ball_device.ball_device.BallDevice
method), 54

add_incoming_ball()
(mpf.devices.playfield.Playfield method),
80

add_missing_balls()
(mpf.devices.playfield.Playfield method),
80

add_mode_event_handler()
(mpf.core.mode.Mode method), 204

add_mode_event_handler()
(mpf.modes.attract.code.attract.Attract

241

MPF Documentation Developer Documentation, Release 0.50.22

method), 97
add_mode_event_handler()

(mpf.modes.bonus.code.bonus.Bonus method),
99

add_mode_event_handler()
(mpf.modes.carousel.code.carousel.Carousel
method), 102

add_mode_event_handler()
(mpf.modes.credits.code.credits.Credits
method), 104

add_mode_event_handler()
(mpf.modes.game.code.game.Game method),
106

add_mode_event_handler()
(mpf.modes.high_score.code.high_score.HighScore
method), 109

add_mode_event_handler()
(mpf.modes.match.code.match.Match method),
112

add_mode_event_handler()
(mpf.modes.service.code.service.Service
method), 114

add_mode_event_handler()
(mpf.modes.tilt.code.tilt.Tilt method), 116

add_monitor() (mpf.core.switch_controller.SwitchController
method), 44

add_platform() (mpf.core.machine.MachineController
method), 36

add_platform() (mpf.tests.MpfTestCase.TestMachineController
method), 197

add_player() (mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 158

add_player() (mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 168

add_setting() (mpf.core.settings_controller.SettingsController
method), 43

add_switch_handler()
(mpf.core.switch_controller.SwitchController
method), 45

add_text() (mpf.devices.segment_display.SegmentDisplay
method), 85

add_to_bank() (mpf.devices.drop_target.DropTarget
method), 66

add_to_group() (mpf.devices.achievement.Achievement
method), 52

advance() (mpf.devices.shot.Shot method), 90
advance_time_and_run()

(mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 149

advance_time_and_run()
(mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 158

advance_time_and_run()
(mpf.tests.MpfGameTestCase.MpfGameTestCase

method), 168
advance_time_and_run()

(mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 179

advance_time_and_run()
(mpf.tests.MpfTestCase.MpfTestCase method),
188

any() (mpf.core.utility_functions.Util static method),
212

are_balls_collected()
(mpf.core.ball_controller.BallController
method), 29

assertAlmostEqual()
(mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 149

assertAlmostEqual()
(mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 158

assertAlmostEqual()
(mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 169

assertAlmostEqual()
(mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 179

assertAlmostEqual()
(mpf.tests.MpfTestCase.MpfTestCase method),
188

assertBallNumber()
(mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 158

assertBallNumber()
(mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 169

assertBallsInPlay()
(mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 159

assertBallsInPlay()
(mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 169

assertColorAlmostEqual()
(mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 149

assertColorAlmostEqual()
(mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 159

assertColorAlmostEqual()
(mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 169

assertColorAlmostEqual()
(mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 179

assertColorAlmostEqual()
(mpf.tests.MpfTestCase.MpfTestCase method),
188

242 Index

MPF Documentation Developer Documentation, Release 0.50.22

assertCountEqual()
(mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 150

assertCountEqual()
(mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 159

assertCountEqual()
(mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 169

assertCountEqual()
(mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 179

assertCountEqual()
(mpf.tests.MpfTestCase.MpfTestCase method),
188

assertDictContainsSubset()
(mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 150

assertDictContainsSubset()
(mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 159

assertDictContainsSubset()
(mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 170

assertDictContainsSubset()
(mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 180

assertDictContainsSubset()
(mpf.tests.MpfTestCase.MpfTestCase method),
188

assertEqual() (mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 150

assertEqual() (mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 159

assertEqual() (mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 170

assertEqual() (mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 180

assertEqual() (mpf.tests.MpfTestCase.MpfTestCase
method), 189

assertEventCalled()
(mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 150

assertEventCalled()
(mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 159

assertEventCalled()
(mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 170

assertEventCalled()
(mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 180

assertEventCalled()
(mpf.tests.MpfTestCase.MpfTestCase method),

189
assertEventCalledWith()

(mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 150

assertEventCalledWith()
(mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 160

assertEventCalledWith()
(mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 170

assertEventCalledWith()
(mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 180

assertEventCalledWith()
(mpf.tests.MpfTestCase.MpfTestCase method),
189

assertEventNotCalled()
(mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 151

assertEventNotCalled()
(mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 160

assertEventNotCalled()
(mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 171

assertEventNotCalled()
(mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 180

assertEventNotCalled()
(mpf.tests.MpfTestCase.MpfTestCase method),
189

assertFalse() (mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 151

assertFalse() (mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 160

assertFalse() (mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 171

assertFalse() (mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 181

assertFalse() (mpf.tests.MpfTestCase.MpfTestCase
method), 189

assertGameIsNotRunning()
(mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 160

assertGameIsNotRunning()
(mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 171

assertGameIsRunning()
(mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 160

assertGameIsRunning()
(mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 171

Index 243

MPF Documentation Developer Documentation, Release 0.50.22

assertGreater() (mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 151

assertGreater() (mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 161

assertGreater() (mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 171

assertGreater() (mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 181

assertGreater() (mpf.tests.MpfTestCase.MpfTestCase
method), 189

assertGreaterEqual()
(mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 151

assertGreaterEqual()
(mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 161

assertGreaterEqual()
(mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 171

assertGreaterEqual()
(mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 181

assertGreaterEqual()
(mpf.tests.MpfTestCase.MpfTestCase method),
190

assertIn() (mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 151

assertIn() (mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 161

assertIn() (mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 171

assertIn() (mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 181

assertIn() (mpf.tests.MpfTestCase.MpfTestCase
method), 190

assertIs() (mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 151

assertIs() (mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 161

assertIs() (mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 171

assertIs() (mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 181

assertIs() (mpf.tests.MpfTestCase.MpfTestCase
method), 190

assertIsInstance()
(mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 151

assertIsInstance()
(mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 161

assertIsInstance()
(mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 171

assertIsInstance()
(mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 181

assertIsInstance()
(mpf.tests.MpfTestCase.MpfTestCase method),
190

assertIsNone() (mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 151

assertIsNone() (mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 161

assertIsNone() (mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 171

assertIsNone() (mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 181

assertIsNone() (mpf.tests.MpfTestCase.MpfTestCase
method), 190

assertIsNot() (mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 151

assertIsNot() (mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 161

assertIsNot() (mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 171

assertIsNot() (mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 181

assertIsNot() (mpf.tests.MpfTestCase.MpfTestCase
method), 190

assertIsNotNone()
(mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 151

assertIsNotNone()
(mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 161

assertIsNotNone()
(mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 171

assertIsNotNone()
(mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 181

assertIsNotNone()
(mpf.tests.MpfTestCase.MpfTestCase method),
190

assertLess() (mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 151

assertLess() (mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 161

assertLess() (mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 171

assertLess() (mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 181

assertLess() (mpf.tests.MpfTestCase.MpfTestCase
method), 190

assertLessEqual()
(mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 151

244 Index

MPF Documentation Developer Documentation, Release 0.50.22

assertLessEqual()
(mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 161

assertLessEqual()
(mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 171

assertLessEqual()
(mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 181

assertLessEqual()
(mpf.tests.MpfTestCase.MpfTestCase method),
190

assertListEqual()
(mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 151

assertListEqual()
(mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 161

assertListEqual()
(mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 171

assertListEqual()
(mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 181

assertListEqual()
(mpf.tests.MpfTestCase.MpfTestCase method),
190

assertLogs() (mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 151

assertLogs() (mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 161

assertLogs() (mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 172

assertLogs() (mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 181

assertLogs() (mpf.tests.MpfTestCase.MpfTestCase
method), 190

assertMultiLineEqual()
(mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 152

assertMultiLineEqual()
(mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 161

assertMultiLineEqual()
(mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 172

assertMultiLineEqual()
(mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 181

assertMultiLineEqual()
(mpf.tests.MpfTestCase.MpfTestCase method),
190

assertNotAlmostEqual()
(mpf.tests.MpfBcpTestCase.MpfBcpTestCase

method), 152
assertNotAlmostEqual()

(mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 161

assertNotAlmostEqual()
(mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 172

assertNotAlmostEqual()
(mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 182

assertNotAlmostEqual()
(mpf.tests.MpfTestCase.MpfTestCase method),
190

assertNotEqual() (mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 152

assertNotEqual() (mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 162

assertNotEqual() (mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 172

assertNotEqual() (mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 182

assertNotEqual() (mpf.tests.MpfTestCase.MpfTestCase
method), 191

assertNotIn() (mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 152

assertNotIn() (mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 162

assertNotIn() (mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 172

assertNotIn() (mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 182

assertNotIn() (mpf.tests.MpfTestCase.MpfTestCase
method), 191

assertNotIsInstance()
(mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 152

assertNotIsInstance()
(mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 162

assertNotIsInstance()
(mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 172

assertNotIsInstance()
(mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 182

assertNotIsInstance()
(mpf.tests.MpfTestCase.MpfTestCase method),
191

assertNotRegex() (mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 152

assertNotRegex() (mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 162

assertNotRegex() (mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 172

Index 245

MPF Documentation Developer Documentation, Release 0.50.22

assertNotRegex() (mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 182

assertNotRegex() (mpf.tests.MpfTestCase.MpfTestCase
method), 191

assertNumBallsKnown()
(mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 152

assertNumBallsKnown()
(mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 162

assertNumBallsKnown()
(mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 172

assertNumBallsKnown()
(mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 182

assertNumBallsKnown()
(mpf.tests.MpfTestCase.MpfTestCase method),
191

assertPlayerNumber()
(mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 162

assertPlayerNumber()
(mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 172

assertRaises() (mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 152

assertRaises() (mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 162

assertRaises() (mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 172

assertRaises() (mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 182

assertRaises() (mpf.tests.MpfTestCase.MpfTestCase
method), 191

assertRaisesRegex()
(mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 152

assertRaisesRegex()
(mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 162

assertRaisesRegex()
(mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 173

assertRaisesRegex()
(mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 182

assertRaisesRegex()
(mpf.tests.MpfTestCase.MpfTestCase method),
191

assertRegex() (mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 153

assertRegex() (mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 163

assertRegex() (mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 173

assertRegex() (mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 183

assertRegex() (mpf.tests.MpfTestCase.MpfTestCase
method), 191

assertSequenceEqual()
(mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 153

assertSequenceEqual()
(mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 163

assertSequenceEqual()
(mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 173

assertSequenceEqual()
(mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 183

assertSequenceEqual()
(mpf.tests.MpfTestCase.MpfTestCase method),
191

assertSetEqual() (mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 153

assertSetEqual() (mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 163

assertSetEqual() (mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 173

assertSetEqual() (mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 183

assertSetEqual() (mpf.tests.MpfTestCase.MpfTestCase
method), 192

assertShotEnabled()
(mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 153

assertShotEnabled()
(mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 163

assertShotEnabled()
(mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 174

assertShotEnabled()
(mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 183

assertShotEnabled()
(mpf.tests.MpfTestCase.MpfTestCase method),
192

assertShotProfile()
(mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 153

assertShotProfile()
(mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 163

assertShotProfile()
(mpf.tests.MpfGameTestCase.MpfGameTestCase

246 Index

MPF Documentation Developer Documentation, Release 0.50.22

method), 174
assertShotProfile()

(mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 183

assertShotProfile()
(mpf.tests.MpfTestCase.MpfTestCase method),
192

assertShotProfileState()
(mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 153

assertShotProfileState()
(mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 163

assertShotProfileState()
(mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 174

assertShotProfileState()
(mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 183

assertShotProfileState()
(mpf.tests.MpfTestCase.MpfTestCase method),
192

assertShotShow() (mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 154

assertShotShow() (mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 163

assertShotShow() (mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 174

assertShotShow() (mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 183

assertShotShow() (mpf.tests.MpfTestCase.MpfTestCase
method), 192

assertTrue() (mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 154

assertTrue() (mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 164

assertTrue() (mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 174

assertTrue() (mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 183

assertTrue() (mpf.tests.MpfTestCase.MpfTestCase
method), 192

assertTupleEqual()
(mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 154

assertTupleEqual()
(mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 164

assertTupleEqual()
(mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 174

assertTupleEqual()
(mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 184

assertTupleEqual()
(mpf.tests.MpfTestCase.MpfTestCase method),
192

assertWarns() (mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 154

assertWarns() (mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 164

assertWarns() (mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 174

assertWarns() (mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 184

assertWarns() (mpf.tests.MpfTestCase.MpfTestCase
method), 193

assertWarnsRegex()
(mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 154

assertWarnsRegex()
(mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 164

assertWarnsRegex()
(mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 175

assertWarnsRegex()
(mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 184

assertWarnsRegex()
(mpf.tests.MpfTestCase.MpfTestCase method),
193

AsyncioSyncAssetManager (class in
mpf.core.assets), 27

Attract (class in mpf.modes.attract.code.attract), 96
audit() (mpf.plugins.auditor.Auditor method), 27
audit_event() (mpf.plugins.auditor.Auditor

method), 28
audit_player() (mpf.plugins.auditor.Auditor

method), 28
audit_shot() (mpf.plugins.auditor.Auditor method),

28
audit_switch() (mpf.plugins.auditor.Auditor

method), 28
Auditor (class in mpf.plugins.auditor), 27
auto_stop_on_ball_end (mpf.core.mode.Mode at-

tribute), 204
AutofireCoil (class in mpf.devices.autofire), 53
available_balls (mpf.devices.ball_device.ball_device.BallDevice

attribute), 54
award() (mpf.devices.extra_ball.ExtraBall method), 68
award() (mpf.devices.extra_ball_group.ExtraBallGroup

method), 67
award_disabled() (mpf.devices.extra_ball_group.ExtraBallGroup

method), 67
award_lit() (mpf.devices.extra_ball_group.ExtraBallGroup

method), 67

Index 247

MPF Documentation Developer Documentation, Release 0.50.22

B
ball_arrived() (mpf.devices.playfield.Playfield

method), 80
ball_drained() (mpf.modes.game.code.game.Game

method), 107
ball_ending() (mpf.modes.game.code.game.Game

method), 107
ball_search (mpf.devices.playfield.Playfield at-

tribute), 80
ball_search_block()

(mpf.devices.playfield.Playfield method),
80

ball_search_disable()
(mpf.devices.playfield.Playfield method),
80

ball_search_enable()
(mpf.devices.playfield.Playfield method),
81

ball_search_unblock()
(mpf.devices.playfield.Playfield method),
81

BallController (class in mpf.core.ball_controller),
28

BallDevice (class in
mpf.devices.ball_device.ball_device), 54

BallHold (class in mpf.devices.ball_hold), 56
BallLock (class in mpf.devices.ball_lock), 57
balls (mpf.devices.ball_device.ball_device.BallDevice

attribute), 54
balls (mpf.devices.playfield.Playfield attribute), 81
balls_in_play (mpf.modes.game.code.game.Game

attribute), 107
BallSave (class in mpf.devices.ball_save), 58
BallSearch (class in mpf.core.ball_search), 200
Bcp (class in mpf.core.bcp.bcp), 29
bin_str_to_hex_str()

(mpf.core.utility_functions.Util static method),
212

blend() (mpf.core.rgb_color.RGBColor static method),
210

blend() (mpf.core.rgba_color.RGBAColor static
method), 208

block() (mpf.core.ball_search.BallSearch method),
200

blocked (mpf.core.ball_search.BallSearch attribute),
200

BlockEventPlayer (class in
mpf.config_players.block_event_player),
141

blue (mpf.core.rgb_color.RGBColor attribute), 210
blue (mpf.core.rgba_color.RGBAColor attribute), 208
Bonus (class in mpf.modes.bonus.code.bonus), 99

C
c_side_active (mpf.platforms.snux.SnuxHardwarePlatform

attribute), 134
cancel() (mpf.devices.sequence_shot.SequenceShot

method), 86
cancel_ball_search()

(mpf.core.ball_search.BallSearch method),
200

cancel_futures() (mpf.core.utility_functions.Util
static method), 212

cancel_path_if_target_is()
(mpf.devices.ball_device.ball_device.BallDevice
method), 54

capacity (mpf.devices.ball_device.ball_device.BallDevice
attribute), 55

Carousel (class in mpf.modes.carousel.code.carousel),
101

change_tick_interval()
(mpf.devices.timer.Timer method), 95

check() (mpf.core.delays.DelayManager method), 217
check_hw_switches()

(mpf.devices.score_reel.ScoreReel method), 84
chime() (mpf.devices.score_reel_group.ScoreReelGroup

class method), 83
chunker() (mpf.core.utility_functions.Util static

method), 212
clear() (mpf.core.delays.DelayManager method), 217
clear_all_credits()

(mpf.modes.credits.code.credits.Credits
method), 104

clear_boot_hold()
(mpf.core.machine.MachineController
method), 36

clear_boot_hold()
(mpf.tests.MpfTestCase.TestMachineController
method), 197

clear_context() (mpf.config_players.coil_player.CoilPlayer
method), 142

clear_context() (mpf.config_players.light_player.LightPlayer
method), 143

clear_context() (mpf.config_players.queue_relay_player.QueueRelayPlayer
method), 145

clear_context() (mpf.config_players.segment_display_player.SegmentDisplayPlayer
method), 146

clear_context() (mpf.config_players.show_player.ShowPlayer
method), 146

clear_context() (mpf.config_players.variable_player.VariablePlayer
method), 147

clear_hw_rule() (mpf.core.platform_controller.PlatformController
method), 41

clear_hw_rule() (mpf.platforms.fast.fast.FastHardwarePlatform
method), 119

clear_hw_rule() (mpf.platforms.lisy.lisy.LisyHardwarePlatform
method), 122

248 Index

MPF Documentation Developer Documentation, Release 0.50.22

clear_hw_rule() (mpf.platforms.opp.opp.OppHardwarePlatform
method), 125

clear_hw_rule() (mpf.platforms.rpi.rpi.RaspberryPiHardwarePlatform
method), 132

clear_hw_rule() (mpf.platforms.snux.SnuxHardwarePlatform
method), 135

clear_hw_rule() (mpf.platforms.spike.spike.SpikePlatform
method), 136

clear_hw_rule() (mpf.platforms.virtual.VirtualHardwarePlatform
method), 138

clear_hw_rule() (mpf.platforms.virtual_pinball.virtual_pinball.VirtualPinballPlatform
method), 140

clear_stack() (mpf.devices.light.Light method), 73
CoilPlayer (class in mpf.config_players.coil_player),

141
collect_balls() (mpf.core.ball_controller.BallController

method), 29
color() (mpf.devices.light.Light method), 73
color() (mpf.devices.light_group.LightRing method),

72
color() (mpf.devices.light_group.LightStrip method),

73
color_correct() (mpf.devices.light.Light method),

74
ComboSwitch (class in mpf.devices.combo_switch), 60
complete() (mpf.devices.achievement.Achievement

method), 52
complete() (mpf.devices.logic_blocks.Accrual

method), 50
complete() (mpf.devices.logic_blocks.Counter

method), 61
complete() (mpf.devices.logic_blocks.Sequence

method), 86
completed (mpf.devices.logic_blocks.Accrual at-

tribute), 50
completed (mpf.devices.logic_blocks.Counter at-

tribute), 61
completed (mpf.devices.logic_blocks.Sequence at-

tribute), 86
configure_accelerometer()

(mpf.platforms.mma8451.MMA8451Platform
method), 124

configure_accelerometer()
(mpf.platforms.p3_roc.P3RocHardwarePlatform
method), 129

configure_accelerometer()
(mpf.platforms.virtual.VirtualHardwarePlatform
method), 138

configure_dmd() (mpf.platforms.fast.fast.FastHardwarePlatform
method), 119

configure_dmd() (mpf.platforms.p_roc.PRocHardwarePlatform
method), 130

configure_dmd() (mpf.platforms.spike.spike.SpikePlatform
method), 136

configure_dmd() (mpf.platforms.virtual.VirtualHardwarePlatform
method), 138

configure_driver()
(mpf.platforms.fast.fast.FastHardwarePlatform
method), 119

configure_driver()
(mpf.platforms.lisy.lisy.LisyHardwarePlatform
method), 122

configure_driver()
(mpf.platforms.opp.opp.OppHardwarePlatform
method), 126

configure_driver()
(mpf.platforms.p3_roc.P3RocHardwarePlatform
method), 129

configure_driver()
(mpf.platforms.p_roc.PRocHardwarePlatform
method), 130

configure_driver()
(mpf.platforms.rpi.rpi.RaspberryPiHardwarePlatform
method), 132

configure_driver()
(mpf.platforms.smart_virtual.SmartVirtualHardwarePlatform
method), 133

configure_driver()
(mpf.platforms.snux.SnuxHardwarePlatform
method), 135

configure_driver()
(mpf.platforms.spike.spike.SpikePlatform
method), 136

configure_driver()
(mpf.platforms.virtual.VirtualHardwarePlatform
method), 138

configure_driver()
(mpf.platforms.virtual_pinball.virtual_pinball.VirtualPinballPlatform
method), 140

configure_hardware_sound_system()
(mpf.platforms.lisy.lisy.LisyHardwarePlatform
method), 122

configure_hardware_sound_system()
(mpf.platforms.virtual.VirtualHardwarePlatform
method), 138

configure_light()
(mpf.platforms.fast.fast.FastHardwarePlatform
method), 119

configure_light()
(mpf.platforms.lisy.lisy.LisyHardwarePlatform
method), 122

configure_light()
(mpf.platforms.openpixel.OpenpixelHardwarePlatform
method), 125

configure_light()
(mpf.platforms.opp.opp.OppHardwarePlatform
method), 126

Index 249

MPF Documentation Developer Documentation, Release 0.50.22

configure_light()
(mpf.platforms.spike.spike.SpikePlatform
method), 136

configure_light()
(mpf.platforms.virtual.VirtualHardwarePlatform
method), 138

configure_light()
(mpf.platforms.virtual_pinball.virtual_pinball.VirtualPinballPlatform
method), 140

configure_logging()
(mpf.core.ball_search.BallSearch method),
200

configure_logging()
(mpf.core.data_manager.DataManager
method), 216

configure_logging()
(mpf.core.delays.DelayManager method),
217

configure_logging() (mpf.core.logging.LogMixin
method), 203

configure_logging() (mpf.core.mode.Mode
method), 204

configure_logging()
(mpf.modes.attract.code.attract.Attract
method), 97

configure_logging()
(mpf.modes.bonus.code.bonus.Bonus method),
100

configure_logging()
(mpf.modes.carousel.code.carousel.Carousel
method), 102

configure_logging()
(mpf.modes.credits.code.credits.Credits
method), 104

configure_logging()
(mpf.modes.game.code.game.Game method),
107

configure_logging()
(mpf.modes.high_score.code.high_score.HighScore
method), 110

configure_logging()
(mpf.modes.match.code.match.Match method),
112

configure_logging()
(mpf.modes.service.code.service.Service
method), 114

configure_logging() (mpf.modes.tilt.code.tilt.Tilt
method), 116

configure_machine_var()
(mpf.core.machine.MachineController
method), 36

configure_machine_var()
(mpf.tests.MpfTestCase.TestMachineController
method), 198

configure_mode_settings()
(mpf.core.mode.Mode method), 205

configure_rgb_dmd()
(mpf.platforms.smartmatrix.SmartMatrixHardwarePlatform
method), 133

configure_rgb_dmd()
(mpf.platforms.virtual.VirtualHardwarePlatform
method), 138

configure_segment_display()
(mpf.platforms.lisy.lisy.LisyHardwarePlatform
method), 122

configure_segment_display()
(mpf.platforms.mypinballs.mypinballs.MyPinballsHardwarePlatform
method), 124

configure_segment_display()
(mpf.platforms.p_roc.PRocHardwarePlatform
method), 130

configure_segment_display()
(mpf.platforms.virtual.VirtualHardwarePlatform
method), 138

configure_servo()
(mpf.platforms.fast.fast.FastHardwarePlatform
method), 119

configure_servo()
(mpf.platforms.i2c_servo_controller.I2CServoControllerHardwarePlatform
method), 122

configure_servo()
(mpf.platforms.pololu_maestro.PololuMaestroHardwarePlatform
method), 131

configure_servo()
(mpf.platforms.rpi.rpi.RaspberryPiHardwarePlatform
method), 132

configure_servo()
(mpf.platforms.virtual.VirtualHardwarePlatform
method), 138

configure_stepper()
(mpf.platforms.trinamics_steprocker.TrinamicsStepRocker
method), 137

configure_stepper()
(mpf.platforms.virtual.VirtualHardwarePlatform
method), 138

configure_switch()
(mpf.platforms.fast.fast.FastHardwarePlatform
method), 119

configure_switch()
(mpf.platforms.lisy.lisy.LisyHardwarePlatform
method), 123

configure_switch()
(mpf.platforms.opp.opp.OppHardwarePlatform
method), 126

configure_switch()
(mpf.platforms.p3_roc.P3RocHardwarePlatform
method), 129

250 Index

MPF Documentation Developer Documentation, Release 0.50.22

configure_switch()
(mpf.platforms.p_roc.PRocHardwarePlatform
method), 130

configure_switch()
(mpf.platforms.rpi.rpi.RaspberryPiHardwarePlatform
method), 132

configure_switch()
(mpf.platforms.spike.spike.SpikePlatform
method), 136

configure_switch()
(mpf.platforms.virtual.VirtualHardwarePlatform
method), 138

configure_switch()
(mpf.platforms.virtual_pinball.virtual_pinball.VirtualPinballPlatform
method), 140

connect() (mpf.tests.MpfBcpTestCase.MockBcpClient
method), 148

convert_number_from_config()
(mpf.platforms.fast.fast.FastHardwarePlatform
static method), 120

convert_to_simply_type()
(mpf.core.utility_functions.Util static method),
212

convert_to_type() (mpf.core.utility_functions.Util
static method), 212

count() (mpf.devices.logic_blocks.Counter method),
61

Counter (class in mpf.devices.logic_blocks), 61
create_data_manager()

(mpf.core.machine.MachineController
method), 37

create_data_manager()
(mpf.tests.MpfTestCase.TestMachineController
method), 198

create_devices() (mpf.core.device_manager.DeviceManager
method), 30

create_machinewide_device_control_events()
(mpf.core.device_manager.DeviceManager
method), 30

create_mode_devices() (mpf.core.mode.Mode
method), 205

create_mode_devices()
(mpf.core.mode_controller.ModeController
method), 39

create_mode_devices()
(mpf.modes.attract.code.attract.Attract
method), 97

create_mode_devices()
(mpf.modes.bonus.code.bonus.Bonus method),
100

create_mode_devices()
(mpf.modes.carousel.code.carousel.Carousel
method), 102

create_mode_devices()
(mpf.modes.credits.code.credits.Credits
method), 105

create_mode_devices()
(mpf.modes.game.code.game.Game method),
107

create_mode_devices()
(mpf.modes.high_score.code.high_score.HighScore
method), 110

create_mode_devices()
(mpf.modes.match.code.match.Match method),
112

create_mode_devices()
(mpf.modes.service.code.service.Service
method), 114

create_mode_devices()
(mpf.modes.tilt.code.tilt.Tilt method), 117

create_show_config()
(mpf.core.show_controller.ShowController
method), 44

Credits (class in mpf.modes.credits.code.credits), 104
current_position() (mpf.devices.stepper.Stepper

method), 92

D
DataManager (class in mpf.core.data_manager), 216
db_to_gain() (mpf.core.utility_functions.Util static

method), 212
deactivate() (mpf.devices.diverter.Diverter

method), 63
debug_log() (mpf.core.ball_search.BallSearch

method), 200
debug_log() (mpf.core.data_manager.DataManager

method), 216
debug_log() (mpf.core.delays.DelayManager

method), 218
debug_log() (mpf.core.logging.LogMixin method),

203
debug_log() (mpf.core.mode.Mode method), 205
debug_log() (mpf.modes.attract.code.attract.Attract

method), 97
debug_log() (mpf.modes.bonus.code.bonus.Bonus

method), 100
debug_log() (mpf.modes.carousel.code.carousel.Carousel

method), 102
debug_log() (mpf.modes.credits.code.credits.Credits

method), 105
debug_log() (mpf.modes.game.code.game.Game

method), 107
debug_log() (mpf.modes.high_score.code.high_score.HighScore

method), 110
debug_log() (mpf.modes.match.code.match.Match

method), 112

Index 251

MPF Documentation Developer Documentation, Release 0.50.22

debug_log() (mpf.modes.service.code.service.Service
method), 114

debug_log() (mpf.modes.tilt.code.tilt.Tilt method),
117

decrease_volume()
(mpf.devices.hardware_sound_system.HardwareSoundSystem
method), 71

delay (mpf.core.mode.Mode attribute), 205
delay (mpf.devices.playfield.Playfield attribute), 81
delayed_eject() (mpf.devices.ball_save.BallSave

method), 59
DelayManager (class in mpf.core.delays), 217
DelayManagerRegistry (class in mpf.core.delays),

219
DeviceManager (class in mpf.core.device_manager),

30
dict_merge() (mpf.core.utility_functions.Util static

method), 212
DigitalOutput (class in mpf.devices.digital_output),

62
disable() (mpf.core.ball_search.BallSearch method),

201
disable() (mpf.devices.achievement.Achievement

method), 52
disable() (mpf.devices.achievement_group.AchievementGroup

method), 51
disable() (mpf.devices.autofire.AutofireCoil method),

53
disable() (mpf.devices.ball_hold.BallHold method),

56
disable() (mpf.devices.ball_lock.BallLock method),

58
disable() (mpf.devices.ball_save.BallSave method),

59
disable() (mpf.devices.digital_output.DigitalOutput

method), 63
disable() (mpf.devices.diverter.Diverter method), 63
disable() (mpf.devices.driver.Driver method), 60
disable() (mpf.devices.dual_wound_coil.DualWoundCoil

method), 67
disable() (mpf.devices.flipper.Flipper method), 70
disable() (mpf.devices.kickback.Kickback method),

72
disable() (mpf.devices.logic_blocks.Accrual

method), 50
disable() (mpf.devices.logic_blocks.Counter

method), 62
disable() (mpf.devices.logic_blocks.Sequence

method), 86
disable() (mpf.devices.magnet.Magnet method), 76
disable() (mpf.devices.multiball.Multiball method),

78
disable() (mpf.devices.multiball_lock.MultiballLock

method), 77

disable() (mpf.devices.shot.Shot method), 90
disable() (mpf.devices.shot_group.ShotGroup

method), 88
disable() (mpf.plugins.auditor.Auditor method), 28
disable_keep_up()

(mpf.devices.drop_target.DropTarget method),
66

disable_rotation()
(mpf.devices.shot_group.ShotGroup method),
88

Diverter (class in mpf.devices.diverter), 63
Dmd (class in mpf.devices.dmd), 64
does_event_exist()

(mpf.core.events.EventManager method),
32

drain_ball() (mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 164

drain_ball() (mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 175

Driver (class in mpf.devices.driver), 59
driver_action() (mpf.platforms.snux.SnuxHardwarePlatform

method), 135
DropTarget (class in mpf.devices.drop_target), 65
DropTargetBank (class in mpf.devices.drop_target),

64
DualWoundCoil (class in

mpf.devices.dual_wound_coil), 66
dump() (mpf.core.mode_controller.ModeController

method), 39
dump_ball_counts()

(mpf.core.ball_controller.BallController
method), 29

E
early_ball_save()

(mpf.devices.ball_save.BallSave method),
59

eject() (mpf.devices.ball_device.ball_device.BallDevice
method), 55

eject_all() (mpf.devices.ball_device.ball_device.BallDevice
method), 55

enable() (mpf.core.ball_search.BallSearch method),
201

enable() (mpf.devices.achievement.Achievement
method), 52

enable() (mpf.devices.achievement_group.AchievementGroup
method), 51

enable() (mpf.devices.autofire.AutofireCoil method),
54

enable() (mpf.devices.ball_hold.BallHold method), 57
enable() (mpf.devices.ball_lock.BallLock method), 58
enable() (mpf.devices.ball_save.BallSave method), 59
enable() (mpf.devices.combo_switch.ComboSwitch

method), 61

252 Index

MPF Documentation Developer Documentation, Release 0.50.22

enable() (mpf.devices.digital_output.DigitalOutput
method), 63

enable() (mpf.devices.diverter.Diverter method), 63
enable() (mpf.devices.driver.Driver method), 60
enable() (mpf.devices.drop_target.DropTargetBank

method), 65
enable() (mpf.devices.dual_wound_coil.DualWoundCoil

method), 67
enable() (mpf.devices.extra_ball.ExtraBall method),

68
enable() (mpf.devices.flipper.Flipper method), 70
enable() (mpf.devices.kickback.Kickback method), 72
enable() (mpf.devices.logic_blocks.Accrual method),

50
enable() (mpf.devices.logic_blocks.Counter method),

62
enable() (mpf.devices.logic_blocks.Sequence

method), 86
enable() (mpf.devices.magnet.Magnet method), 76
enable() (mpf.devices.multiball.Multiball method), 78
enable() (mpf.devices.multiball_lock.MultiballLock

method), 77
enable() (mpf.devices.sequence_shot.SequenceShot

method), 86
enable() (mpf.devices.shot.Shot method), 90
enable() (mpf.devices.shot_group.ShotGroup

method), 88
enable() (mpf.devices.shot_profile.ShotProfile

method), 89
enable() (mpf.devices.state_machine.StateMachine

method), 91
enable() (mpf.devices.timed_switch.TimedSwitch

method), 94
enable() (mpf.devices.timer.Timer method), 95
enable() (mpf.plugins.auditor.Auditor method), 28
enable_credit_play()

(mpf.modes.credits.code.credits.Credits
method), 105

enable_events() (mpf.core.player.Player method),
207

enable_free_play()
(mpf.modes.credits.code.credits.Credits
method), 105

enable_keep_up() (mpf.devices.drop_target.DropTarget
method), 66

enable_rotation()
(mpf.devices.shot_group.ShotGroup method),
88

enabled (mpf.core.ball_search.BallSearch attribute),
201

enabled (mpf.devices.achievement_group.AchievementGroup
attribute), 52

enabled (mpf.devices.extra_ball.ExtraBall attribute),
68

enabled (mpf.devices.extra_ball_group.ExtraBallGroup
attribute), 68

enabled (mpf.devices.logic_blocks.Accrual attribute),
51

enabled (mpf.devices.logic_blocks.Counter attribute),
62

enabled (mpf.devices.logic_blocks.Sequence attribute),
86

enabled (mpf.devices.shot.Shot attribute), 90
enabled (mpf.plugins.auditor.Auditor attribute), 28
end_ball() (mpf.modes.game.code.game.Game

method), 107
end_game() (mpf.modes.game.code.game.Game

method), 108
ensure_future() (mpf.core.utility_functions.Util

static method), 213
entrance() (mpf.devices.ball_device.ball_device.BallDevice

method), 55
eom_resp() (mpf.platforms.opp.opp.OppHardwarePlatform

static method), 126
error_log() (mpf.core.ball_search.BallSearch

method), 201
error_log() (mpf.core.data_manager.DataManager

method), 216
error_log() (mpf.core.delays.DelayManager

method), 218
error_log() (mpf.core.logging.LogMixin method),

203
error_log() (mpf.core.mode.Mode method), 205
error_log() (mpf.modes.attract.code.attract.Attract

method), 97
error_log() (mpf.modes.bonus.code.bonus.Bonus

method), 100
error_log() (mpf.modes.carousel.code.carousel.Carousel

method), 102
error_log() (mpf.modes.credits.code.credits.Credits

method), 105
error_log() (mpf.modes.game.code.game.Game

method), 108
error_log() (mpf.modes.high_score.code.high_score.HighScore

method), 110
error_log() (mpf.modes.match.code.match.Match

method), 112
error_log() (mpf.modes.service.code.service.Service

method), 114
error_log() (mpf.modes.tilt.code.tilt.Tilt method),

117
event_config_to_dict()

(mpf.core.utility_functions.Util static method),
213

EventManager (class in mpf.core.events), 31
EventPlayer (class in

mpf.config_players.event_player), 142

Index 253

MPF Documentation Developer Documentation, Release 0.50.22

expected_ball_received()
(mpf.devices.ball_device.ball_device.BallDevice
method), 55

expected_ball_received()
(mpf.devices.playfield.Playfield method),
81

ExtraBall (class in mpf.devices.extra_ball), 68
ExtraBallGroup (class in

mpf.devices.extra_ball_group), 67

F
fade_in_progress (mpf.devices.light.Light at-

tribute), 74
FadecandyHardwarePlatform (class in

mpf.platforms.fadecandy), 118
fail() (mpf.tests.MpfBcpTestCase.MpfBcpTestCase

method), 154
fail() (mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase

method), 164
fail() (mpf.tests.MpfGameTestCase.MpfGameTestCase

method), 175
fail() (mpf.tests.MpfMachineTestCase.MpfMachineTestCase

method), 184
fail() (mpf.tests.MpfTestCase.MpfTestCase method),

193
FastHardwarePlatform (class in

mpf.platforms.fast.fast), 119
FileManager (class in mpf.core.file_manager), 202
fill_troughs() (mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase

method), 165
fill_troughs() (mpf.tests.MpfGameTestCase.MpfGameTestCase

method), 175
find_available_ball_in_path()

(mpf.devices.ball_device.ball_device.BallDevice
method), 55

find_next_trough()
(mpf.devices.ball_device.ball_device.BallDevice
method), 55

find_one_available_ball()
(mpf.devices.ball_device.ball_device.BallDevice
method), 55

find_path_to_target()
(mpf.devices.ball_device.ball_device.BallDevice
method), 55

first() (mpf.core.utility_functions.Util static method),
213

FlasherPlayer (class in
mpf.config_players.flasher_player), 142

fling_ball() (mpf.devices.magnet.Magnet method),
76

Flipper (class in mpf.devices.flipper), 69

G
Game (class in mpf.modes.game.code.game), 106

game_ending() (mpf.modes.game.code.game.Game
method), 108

gamma_correct() (mpf.devices.light.Light method),
74

get_active_event_for_switch()
(mpf.core.switch_controller.SwitchController
static method), 45

get_additional_ball_capacity()
(mpf.devices.playfield.Playfield class method),
81

get_and_verify_hold_power()
(mpf.devices.driver.Driver method), 60

get_and_verify_pulse_ms()
(mpf.devices.driver.Driver method), 60

get_and_verify_pulse_power()
(mpf.devices.driver.Driver method), 60

get_coil_config_section()
(mpf.platforms.fast.fast.FastHardwarePlatform
class method), 120

get_coil_config_section()
(mpf.platforms.opp.opp.OppHardwarePlatform
class method), 126

get_coil_map() (mpf.core.service_controller.ServiceController
method), 42

get_color() (mpf.devices.light.Light method), 74
get_color_below() (mpf.devices.light.Light

method), 74
get_config_spec() (mpf.core.mode.Mode static

method), 205
get_current() (mpf.core.randomizer.Randomizer

method), 211
get_data() (mpf.core.data_manager.DataManager

method), 216
get_data() (mpf.tests.TestDataManager.TestDataManager

method), 197
get_device_control_events()

(mpf.core.device_manager.DeviceManager
method), 30

get_enable_plugins()
(mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 155

get_enable_plugins()
(mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 165

get_enable_plugins()
(mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 176

get_enable_plugins()
(mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 185

get_enable_plugins()
(mpf.tests.MpfTestCase.MpfTestCase method),
194

254 Index

MPF Documentation Developer Documentation, Release 0.50.22

get_event_and_condition_from_string()
(mpf.core.events.EventManager method), 32

get_express_config()
(mpf.config_players.block_event_player.BlockEventPlayer
method), 141

get_express_config()
(mpf.config_players.coil_player.CoilPlayer
method), 142

get_express_config()
(mpf.config_players.event_player.EventPlayer
method), 142

get_express_config()
(mpf.config_players.flasher_player.FlasherPlayer
method), 143

get_express_config()
(mpf.config_players.hardware_sound_player.HardwareSoundPlayer
method), 143

get_express_config()
(mpf.config_players.light_player.LightPlayer
method), 144

get_express_config()
(mpf.config_players.queue_event_player.QueueEventPlayer
method), 144

get_express_config()
(mpf.config_players.queue_relay_player.QueueRelayPlayer
method), 145

get_express_config()
(mpf.config_players.random_event_player.RandomEventPlayer
method), 145

get_express_config()
(mpf.config_players.segment_display_player.SegmentDisplayPlayer
method), 146

get_express_config()
(mpf.config_players.show_player.ShowPlayer
method), 146

get_express_config()
(mpf.config_players.variable_player.VariablePlayer
method), 147

get_file_interface()
(mpf.core.file_manager.FileManager static
method), 202

get_from_dict() (mpf.core.utility_functions.Util
static method), 213

get_full_config()
(mpf.config_players.light_player.LightPlayer
method), 144

get_gen2_cfg_resp()
(mpf.platforms.opp.opp.OppHardwarePlatform
method), 126

get_global_parameters()
(mpf.core.placeholder_manager.PlaceholderManager
method), 40

get_hw_numbers() (mpf.devices.light.Light method),
74

get_hw_switch_states()
(mpf.platforms.fast.fast.FastHardwarePlatform
method), 120

get_hw_switch_states()
(mpf.platforms.lisy.lisy.LisyHardwarePlatform
method), 123

get_hw_switch_states()
(mpf.platforms.opp.opp.OppHardwarePlatform
method), 126

get_hw_switch_states()
(mpf.platforms.p3_roc.P3RocHardwarePlatform
method), 129

get_hw_switch_states()
(mpf.platforms.p_roc.PRocHardwarePlatform
method), 130

get_hw_switch_states()
(mpf.platforms.rpi.rpi.RaspberryPiHardwarePlatform
method), 132

get_hw_switch_states()
(mpf.platforms.spike.spike.SpikePlatform
method), 136

get_hw_switch_states()
(mpf.platforms.virtual.VirtualHardwarePlatform
method), 139

get_hw_switch_states()
(mpf.platforms.virtual_pinball.virtual_pinball.VirtualPinballPlatform
method), 140

get_info_string()
(mpf.platforms.fast.fast.FastHardwarePlatform
method), 120

get_info_string()
(mpf.platforms.opp.opp.OppHardwarePlatform
method), 126

get_info_string()
(mpf.platforms.p3_roc.P3RocHardwarePlatform
method), 129

get_info_string()
(mpf.platforms.p_roc.PRocHardwarePlatform
method), 131

get_level_xyz() (mpf.devices.accelerometer.Accelerometer
method), 50

get_level_xz() (mpf.devices.accelerometer.Accelerometer
method), 50

get_level_yz() (mpf.devices.accelerometer.Accelerometer
method), 50

get_light_map() (mpf.core.service_controller.ServiceController
method), 43

get_list_config()
(mpf.config_players.event_player.EventPlayer
method), 142

get_list_config()
(mpf.config_players.random_event_player.RandomEventPlayer
method), 145

Index 255

MPF Documentation Developer Documentation, Release 0.50.22

get_list_config()
(mpf.config_players.variable_player.VariablePlayer
method), 147

get_machine_var()
(mpf.core.machine.MachineController
method), 37

get_machine_var()
(mpf.tests.MpfTestCase.TestMachineController
method), 198

get_monitorable_devices()
(mpf.core.device_manager.DeviceManager
method), 30

get_named_list_from_objects()
(mpf.core.utility_functions.Util static method),
213

get_next() (mpf.core.randomizer.Randomizer
method), 211

get_next_show_id()
(mpf.core.show_controller.ShowController
method), 44

get_next_timed_switch_event()
(mpf.core.switch_controller.SwitchController
method), 45

get_platform() (mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 155

get_platform() (mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 165

get_platform() (mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 176

get_platform() (mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 185

get_platform() (mpf.tests.MpfTestCase.MpfTestCase
method), 194

get_platform_sections()
(mpf.core.machine.MachineController
method), 37

get_platform_sections()
(mpf.tests.MpfTestCase.TestMachineController
method), 198

get_setting_machine_var()
(mpf.core.settings_controller.SettingsController
method), 43

get_setting_value()
(mpf.core.settings_controller.SettingsController
method), 43

get_setting_value_label()
(mpf.core.settings_controller.SettingsController
method), 43

get_settings() (mpf.core.settings_controller.SettingsController
method), 43

get_start_value()
(mpf.devices.logic_blocks.Accrual method), 51

get_start_value()
(mpf.devices.logic_blocks.Counter method), 62

get_start_value()
(mpf.devices.logic_blocks.Sequence method),
86

get_string_config()
(mpf.config_players.hardware_sound_player.HardwareSoundPlayer
method), 143

get_switch_config_section()
(mpf.platforms.fast.fast.FastHardwarePlatform
class method), 120

get_switch_map() (mpf.core.service_controller.ServiceController
method), 43

get_timer() (mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 155

get_timer() (mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 165

get_timer() (mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 176

get_timer() (mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 185

get_timer() (mpf.tests.MpfTestCase.MpfTestCase
method), 194

get_token() (mpf.devices.light_group.LightRing
method), 72

get_token() (mpf.devices.light_group.LightStrip
method), 73

get_use_bcp() (mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 155

get_use_bcp() (mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 165

get_use_bcp() (mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 176

get_use_bcp() (mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 185

get_use_bcp() (mpf.tests.MpfTestCase.MpfTestCase
method), 194

get_wait_time_for_pulse()
(mpf.devices.power_supply_unit.PowerSupplyUnit
method), 82

getConfigFile() (mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 155

getConfigFile() (mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 165

getConfigFile() (mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 175

getConfigFile() (mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 184

getConfigFile() (mpf.tests.MpfTestCase.MpfTestCase
method), 193

getMachinePath() (mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 155

getMachinePath() (mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 165

getMachinePath() (mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 175

256 Index

MPF Documentation Developer Documentation, Release 0.50.22

getMachinePath() (mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 185

getMachinePath() (mpf.tests.MpfTestCase.MpfTestCase
method), 193

give_up() (mpf.core.ball_search.BallSearch method),
201

go_to_position() (mpf.devices.motor.Motor
method), 77

go_to_position() (mpf.devices.servo.Servo
method), 87

grab_ball() (mpf.devices.magnet.Magnet method),
76

green (mpf.core.rgb_color.RGBColor attribute), 210
green (mpf.core.rgba_color.RGBAColor attribute), 208
group (mpf.devices.extra_ball.ExtraBall attribute), 68

H
handle_mechanial_eject_during_idle()

(mpf.devices.ball_device.ball_device.BallDevice
method), 55

handle_subscription_change()
(mpf.config_players.light_player.LightPlayer
method), 144

handle_subscription_change()
(mpf.config_players.show_player.ShowPlayer
method), 146

HardwareSoundPlayer (class in
mpf.config_players.hardware_sound_player),
143

HardwareSoundSystem (class in
mpf.devices.hardware_sound_system), 70

hex (mpf.core.rgb_color.RGBColor attribute), 210
hex (mpf.core.rgba_color.RGBAColor attribute), 208
hex_string_to_int()

(mpf.core.utility_functions.Util static method),
213

hex_string_to_list()
(mpf.core.utility_functions.Util static method),
213

hex_to_rgb() (mpf.core.rgb_color.RGBColor static
method), 210

hex_to_rgb() (mpf.core.rgba_color.RGBAColor
static method), 208

HighScore (class in
mpf.modes.high_score.code.high_score),
109

hit() (mpf.devices.logic_blocks.Accrual method), 51
hit() (mpf.devices.logic_blocks.Sequence method), 87
hit() (mpf.devices.shot.Shot method), 90
hit_and_release_switch()

(mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 156

hit_and_release_switch()
(mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase

method), 166
hit_and_release_switch()

(mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 176

hit_and_release_switch()
(mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 185

hit_and_release_switch()
(mpf.tests.MpfTestCase.MpfTestCase method),
194

hit_switch_and_run()
(mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 156

hit_switch_and_run()
(mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 166

hit_switch_and_run()
(mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 176

hit_switch_and_run()
(mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 186

hit_switch_and_run()
(mpf.tests.MpfTestCase.MpfTestCase method),
194

hold() (mpf.devices.ball_device.ball_device.BallDevice
method), 55

home() (mpf.devices.stepper.Stepper method), 92
hurry_up() (mpf.modes.bonus.code.bonus.Bonus

method), 100
hw_state (mpf.devices.switch.Switch attribute), 93

I
i2c_read16() (mpf.platforms.p3_roc.P3RocHardwarePlatform

method), 129
i2c_read16() (mpf.platforms.virtual.VirtualHardwarePlatform

method), 139
i2c_read8() (mpf.platforms.p3_roc.P3RocHardwarePlatform

method), 129
i2c_read8() (mpf.platforms.rpi.rpi.RaspberryPiHardwarePlatform

method), 132
i2c_read8() (mpf.platforms.smbus2.Smbus2

method), 134
i2c_read8() (mpf.platforms.virtual.VirtualHardwarePlatform

method), 139
i2c_read_block() (mpf.platforms.p3_roc.P3RocHardwarePlatform

method), 129
i2c_read_block() (mpf.platforms.rpi.rpi.RaspberryPiHardwarePlatform

method), 132
i2c_read_block() (mpf.platforms.smbus2.Smbus2

method), 134
i2c_read_block() (mpf.platforms.virtual.VirtualHardwarePlatform

method), 139

Index 257

MPF Documentation Developer Documentation, Release 0.50.22

i2c_write8() (mpf.platforms.p3_roc.P3RocHardwarePlatform
method), 129

i2c_write8() (mpf.platforms.rpi.rpi.RaspberryPiHardwarePlatform
method), 132

i2c_write8() (mpf.platforms.smbus2.Smbus2
method), 134

i2c_write8() (mpf.platforms.virtual.VirtualHardwarePlatform
method), 139

I2CServoControllerHardwarePlatform (class
in mpf.platforms.i2c_servo_controller), 121

ignorable_runtime_exception()
(mpf.core.ball_search.BallSearch method),
201

ignorable_runtime_exception()
(mpf.core.data_manager.DataManager
method), 216

ignorable_runtime_exception()
(mpf.core.delays.DelayManager method),
218

ignorable_runtime_exception()
(mpf.core.logging.LogMixin method), 203

ignorable_runtime_exception()
(mpf.core.mode.Mode method), 205

ignorable_runtime_exception()
(mpf.modes.attract.code.attract.Attract
method), 97

ignorable_runtime_exception()
(mpf.modes.bonus.code.bonus.Bonus method),
100

ignorable_runtime_exception()
(mpf.modes.carousel.code.carousel.Carousel
method), 102

ignorable_runtime_exception()
(mpf.modes.credits.code.credits.Credits
method), 105

ignorable_runtime_exception()
(mpf.modes.game.code.game.Game method),
108

ignorable_runtime_exception()
(mpf.modes.high_score.code.high_score.HighScore
method), 110

ignorable_runtime_exception()
(mpf.modes.match.code.match.Match method),
112

ignorable_runtime_exception()
(mpf.modes.service.code.service.Service
method), 115

ignorable_runtime_exception()
(mpf.modes.tilt.code.tilt.Tilt method), 117

ignorable_runtime_exception()
(mpf.tests.MpfBcpTestCase.MockBcpClient
method), 148

ignorable_runtime_exception()
(mpf.tests.MpfTestCase.TestMachineController

method), 198
ignorable_runtime_exception()

(mpf.tests.TestDataManager.TestDataManager
method), 197

increase_volume()
(mpf.devices.hardware_sound_system.HardwareSoundSystem
method), 71

info_log() (mpf.core.ball_search.BallSearch
method), 201

info_log() (mpf.core.data_manager.DataManager
method), 216

info_log() (mpf.core.delays.DelayManager method),
218

info_log() (mpf.core.logging.LogMixin method), 203
info_log() (mpf.core.mode.Mode method), 205
info_log() (mpf.modes.attract.code.attract.Attract

method), 98
info_log() (mpf.modes.bonus.code.bonus.Bonus

method), 100
info_log() (mpf.modes.carousel.code.carousel.Carousel

method), 103
info_log() (mpf.modes.credits.code.credits.Credits

method), 105
info_log() (mpf.modes.game.code.game.Game

method), 108
info_log() (mpf.modes.high_score.code.high_score.HighScore

method), 110
info_log() (mpf.modes.match.code.match.Match

method), 112
info_log() (mpf.modes.service.code.service.Service

method), 115
info_log() (mpf.modes.tilt.code.tilt.Tilt method), 117
InfoLights (class in mpf.plugins.info_lights), 35
init() (mpf.core.file_manager.FileManager class

method), 202
init_done() (mpf.core.machine.MachineController

method), 37
init_done() (mpf.tests.MpfTestCase.TestMachineController

method), 198
initialise() (mpf.core.machine.MachineController

method), 37
initialise() (mpf.tests.MpfTestCase.TestMachineController

method), 198
initialise_core_and_hardware()

(mpf.core.machine.MachineController
method), 37

initialise_core_and_hardware()
(mpf.tests.MpfTestCase.TestMachineController
method), 198

initialise_light_subsystem()
(mpf.core.light_controller.LightController
method), 36

initialise_mode() (mpf.core.mode.Mode method),
205

258 Index

MPF Documentation Developer Documentation, Release 0.50.22

initialise_mode()
(mpf.modes.attract.code.attract.Attract
method), 98

initialise_mode()
(mpf.modes.bonus.code.bonus.Bonus method),
100

initialise_mode()
(mpf.modes.carousel.code.carousel.Carousel
method), 103

initialise_mode()
(mpf.modes.credits.code.credits.Credits
method), 105

initialise_mode()
(mpf.modes.game.code.game.Game method),
108

initialise_mode()
(mpf.modes.high_score.code.high_score.HighScore
method), 110

initialise_mode()
(mpf.modes.match.code.match.Match method),
113

initialise_mode()
(mpf.modes.service.code.service.Service
method), 115

initialise_mode() (mpf.modes.tilt.code.tilt.Tilt
method), 117

initialise_modes()
(mpf.core.mode_controller.ModeController
method), 39

initialise_mpf() (mpf.core.machine.MachineController
method), 37

initialise_mpf() (mpf.tests.MpfTestCase.TestMachineController
method), 198

initialize() (mpf.platforms.fast.fast.FastHardwarePlatform
method), 120

initialize() (mpf.platforms.i2c_servo_controller.I2CServoControllerHardwarePlatform
method), 122

initialize() (mpf.platforms.lisy.lisy.LisyHardwarePlatform
method), 123

initialize() (mpf.platforms.mma8451.MMA8451Platform
method), 124

initialize() (mpf.platforms.mypinballs.mypinballs.MyPinballsHardwarePlatform
method), 124

initialize() (mpf.platforms.openpixel.OpenpixelHardwarePlatform
method), 125

initialize() (mpf.platforms.opp.opp.OppHardwarePlatform
method), 126

initialize() (mpf.platforms.pololu_maestro.PololuMaestroHardwarePlatform
method), 131

initialize() (mpf.platforms.rpi.rpi.RaspberryPiHardwarePlatform
method), 132

initialize() (mpf.platforms.smartmatrix.SmartMatrixHardwarePlatform
method), 133

initialize() (mpf.platforms.smbus2.Smbus2
method), 134

initialize() (mpf.platforms.snux.SnuxHardwarePlatform
method), 135

initialize() (mpf.platforms.spike.spike.SpikePlatform
method), 136

initialize() (mpf.platforms.trinamics_steprocker.TrinamicsStepRocker
method), 137

initialize() (mpf.platforms.virtual.VirtualHardwarePlatform
method), 139

initialize() (mpf.platforms.virtual_pinball.virtual_pinball.VirtualPinballPlatform
method), 140

initialize_devices()
(mpf.core.device_manager.DeviceManager
method), 30

int_to_hex_string()
(mpf.core.utility_functions.Util static method),
214

int_to_reel_list()
(mpf.devices.score_reel_group.ScoreReelGroup
method), 83

inv_resp() (mpf.platforms.opp.opp.OppHardwarePlatform
method), 126

is_active() (mpf.core.mode_controller.ModeController
method), 39

is_active() (mpf.core.switch_controller.SwitchController
method), 45

is_entry_valid_outside_mode()
(mpf.config_players.random_event_player.RandomEventPlayer
static method), 145

is_entry_valid_outside_mode()
(mpf.config_players.variable_player.VariablePlayer
static method), 147

is_full() (mpf.devices.ball_hold.BallHold method),
57

is_full() (mpf.devices.ball_lock.BallLock method),
58

is_game_mode (mpf.core.mode.Mode attribute), 205
is_game_mode (mpf.modes.attract.code.attract.Attract

attribute), 98
is_game_mode (mpf.modes.bonus.code.bonus.Bonus

attribute), 100
is_game_mode (mpf.modes.carousel.code.carousel.Carousel

attribute), 103
is_game_mode (mpf.modes.credits.code.credits.Credits

attribute), 105
is_game_mode (mpf.modes.game.code.game.Game at-

tribute), 108
is_game_mode (mpf.modes.high_score.code.high_score.HighScore

attribute), 110
is_game_mode (mpf.modes.match.code.match.Match

attribute), 113
is_game_mode (mpf.modes.service.code.service.Service

attribute), 115

Index 259

MPF Documentation Developer Documentation, Release 0.50.22

is_game_mode (mpf.modes.tilt.code.tilt.Tilt attribute),
117

is_hex_string() (mpf.core.utility_functions.Util
static method), 214

is_in_service() (mpf.core.service_controller.ServiceController
method), 43

is_inactive() (mpf.core.switch_controller.SwitchController
method), 45

is_machine_var() (mpf.core.machine.MachineController
method), 37

is_machine_var() (mpf.tests.MpfTestCase.TestMachineController
method), 198

is_ok_to_award() (mpf.devices.extra_ball.ExtraBall
method), 68

is_ok_to_light() (mpf.devices.extra_ball.ExtraBall
method), 69

is_ok_to_light() (mpf.devices.extra_ball_group.ExtraBallGroup
method), 68

is_player_var() (mpf.core.player.Player method),
207

is_playfield() (mpf.devices.ball_device.ball_device.BallDevice
class method), 55

is_playfield() (mpf.devices.playfield.Playfield
class method), 81

is_power2() (mpf.core.utility_functions.Util static
method), 214

is_state() (mpf.core.switch_controller.SwitchController
method), 45

is_virtually_full
(mpf.devices.multiball_lock.MultiballLock
attribute), 77

iteration (mpf.core.ball_search.BallSearch at-
tribute), 201

J
jump() (mpf.devices.shot.Shot method), 90
jump() (mpf.devices.timer.Timer method), 95

K
keys_to_lower() (mpf.core.utility_functions.Util

static method), 214
Kickback (class in mpf.devices.kickback), 71
knockdown() (mpf.devices.drop_target.DropTarget

method), 66

L
Light (class in mpf.devices.light), 73
light() (mpf.devices.extra_ball.ExtraBall method), 69
light() (mpf.devices.extra_ball_group.ExtraBallGroup

method), 68
light() (mpf.devices.score_reel_group.ScoreReelGroup

method), 83
light_sync() (mpf.platforms.opp.opp.OppHardwarePlatform

method), 126

LightController (class in
mpf.core.light_controller), 35

LightPlayer (class in
mpf.config_players.light_player), 143

LightRing (class in mpf.devices.light_group), 72
LightStrip (class in mpf.devices.light_group), 73
list_of_lists() (mpf.core.utility_functions.Util

static method), 214
LisyHardwarePlatform (class in

mpf.platforms.lisy.lisy), 122
load() (mpf.core.file_manager.FileManager static

method), 202
load_asset() (mpf.core.assets.AsyncioSyncAssetManager

method), 27
load_devices_config()

(mpf.core.device_manager.DeviceManager
method), 30

load_mode_devices() (mpf.core.mode.Mode
method), 205

load_mode_devices()
(mpf.core.mode_controller.ModeController
method), 39

load_mode_devices()
(mpf.modes.attract.code.attract.Attract
method), 98

load_mode_devices()
(mpf.modes.bonus.code.bonus.Bonus method),
101

load_mode_devices()
(mpf.modes.carousel.code.carousel.Carousel
method), 103

load_mode_devices()
(mpf.modes.credits.code.credits.Credits
method), 105

load_mode_devices()
(mpf.modes.game.code.game.Game method),
108

load_mode_devices()
(mpf.modes.high_score.code.high_score.HighScore
method), 110

load_mode_devices()
(mpf.modes.match.code.match.Match method),
113

load_mode_devices()
(mpf.modes.service.code.service.Service
method), 115

load_mode_devices() (mpf.modes.tilt.code.tilt.Tilt
method), 117

load_modes() (mpf.core.mode_controller.ModeController
method), 39

locate_file() (mpf.core.file_manager.FileManager
static method), 202

locked_balls (mpf.devices.multiball_lock.MultiballLock
attribute), 77

260 Index

MPF Documentation Developer Documentation, Release 0.50.22

log_active_switches()
(mpf.core.switch_controller.SwitchController
method), 46

LogMixin (class in mpf.core.logging), 203
loop (mpf.core.randomizer.Randomizer attribute), 211
lost_ejected_ball()

(mpf.devices.ball_device.ball_device.BallDevice
method), 55

lost_idle_ball() (mpf.devices.ball_device.ball_device.BallDevice
method), 55

lost_incoming_ball()
(mpf.devices.ball_device.ball_device.BallDevice
method), 55

M
machine (mpf.platforms.p3_roc.P3RocHardwarePlatform

attribute), 129
machine (mpf.platforms.p_roc.PRocHardwarePlatform

attribute), 130
machine_run() (mpf.tests.MpfBcpTestCase.MpfBcpTestCase

method), 156
machine_run() (mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase

method), 166
machine_run() (mpf.tests.MpfGameTestCase.MpfGameTestCase

method), 177
machine_run() (mpf.tests.MpfMachineTestCase.MpfMachineTestCase

method), 186
machine_run() (mpf.tests.MpfTestCase.MpfTestCase

method), 195
MachineController (class in mpf.core.machine), 36
Magnet (class in mpf.devices.magnet), 76
mark_playfield_active_from_device_action()

(mpf.devices.playfield.Playfield method), 81
Match (class in mpf.modes.match.code.match), 111
member_state_changed()

(mpf.devices.achievement_group.AchievementGroup
method), 52

member_target_change()
(mpf.devices.drop_target.DropTargetBank
method), 65

MMA8451Platform (class in
mpf.platforms.mma8451), 124

mock_event() (mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 156

mock_event() (mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 166

mock_event() (mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 177

mock_event() (mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 186

mock_event() (mpf.tests.MpfTestCase.MpfTestCase
method), 195

MockBcpClient (class in mpf.tests.MpfBcpTestCase),
148

Mode (class in mpf.core.mode), 204
mode_init() (mpf.core.mode.Mode method), 205
mode_start() (mpf.core.mode.Mode method), 205
mode_stop() (mpf.core.mode.Mode method), 205
ModeController (class in

mpf.core.mode_controller), 38
monitor_enabled (mpf.core.player.Player attribute),

207
monitor_enabled (mpf.devices.shot.Shot attribute),

90
monitor_lights() (mpf.core.light_controller.LightController

method), 36
Motor (class in mpf.devices.motor), 76
move_abs_pos() (mpf.devices.stepper.Stepper

method), 92
move_rel_pos() (mpf.devices.stepper.Stepper

method), 92
move_vel_mode() (mpf.devices.stepper.Stepper

method), 92
MpfBcpTestCase (class in

mpf.tests.MpfBcpTestCase), 149
MpfFakeGameTestCase (class in

mpf.tests.MpfFakeGameTestCase), 158
MpfGameTestCase (class in

mpf.tests.MpfGameTestCase), 168
MpfMachineTestCase (class in

mpf.tests.MpfMachineTestCase), 179
MpfTestCase (class in mpf.tests.MpfTestCase), 188
ms_since_change()

(mpf.core.switch_controller.SwitchController
method), 46

Multiball (class in mpf.devices.multiball), 78
MultiballLock (class in mpf.devices.multiball_lock),

77
MyPinballsHardwarePlatform (class in

mpf.platforms.mypinballs.mypinballs), 124

N
name (mpf.core.rgb_color.RGBColor attribute), 210
name (mpf.core.rgba_color.RGBAColor attribute), 209
name_to_rgb() (mpf.core.rgb_color.RGBColor static

method), 210
name_to_rgb() (mpf.core.rgba_color.RGBAColor

static method), 209
normalize_hex_string()

(mpf.core.utility_functions.Util static method),
214

notify_about_instant_pulse()
(mpf.devices.power_supply_unit.PowerSupplyUnit
method), 82

notify_device_changes()
(mpf.core.device_manager.DeviceManager
method), 30

Index 261

MPF Documentation Developer Documentation, Release 0.50.22

O
off() (mpf.devices.light.Light method), 74
on() (mpf.devices.light.Light method), 75
OpenpixelHardwarePlatform (class in

mpf.platforms.openpixel), 125
OppHardwarePlatform (class in

mpf.platforms.opp.opp), 125

P
P3RocHardwarePlatform (class in

mpf.platforms.p3_roc), 128
parse_light_number_to_channels()

(mpf.platforms.fast.fast.FastHardwarePlatform
method), 120

parse_light_number_to_channels()
(mpf.platforms.lisy.lisy.LisyHardwarePlatform
method), 123

parse_light_number_to_channels()
(mpf.platforms.openpixel.OpenpixelHardwarePlatform
method), 125

parse_light_number_to_channels()
(mpf.platforms.opp.opp.OppHardwarePlatform
method), 126

parse_light_number_to_channels()
(mpf.platforms.spike.spike.SpikePlatform
method), 136

parse_light_number_to_channels()
(mpf.platforms.virtual.VirtualHardwarePlatform
method), 139

parse_light_number_to_channels()
(mpf.platforms.virtual_pinball.virtual_pinball.VirtualPinballPlatform
method), 140

pause() (mpf.devices.timer.Timer method), 95
persist_enabled (mpf.devices.shot.Shot attribute),

90
phase (mpf.core.ball_search.BallSearch attribute), 201
pick_weighted_random()

(mpf.core.randomizer.Randomizer static
method), 211

PlaceholderManager (class in
mpf.core.placeholder_manager), 40

PlatformController (class in
mpf.core.platform_controller), 40

PlatformController.DriverRuleSettings
(class in mpf.core.platform_controller), 42

PlatformController.HoldRuleSettings
(class in mpf.core.platform_controller), 42

PlatformController.PulseRuleSettings
(class in mpf.core.platform_controller), 41, 42

play() (mpf.config_players.block_event_player.BlockEventPlayer
method), 141

play() (mpf.config_players.coil_player.CoilPlayer
method), 142

play() (mpf.config_players.event_player.EventPlayer
method), 142

play() (mpf.config_players.flasher_player.FlasherPlayer
method), 143

play() (mpf.config_players.hardware_sound_player.HardwareSoundPlayer
method), 143

play() (mpf.config_players.light_player.LightPlayer
method), 144

play() (mpf.config_players.queue_event_player.QueueEventPlayer
method), 144

play() (mpf.config_players.queue_relay_player.QueueRelayPlayer
method), 145

play() (mpf.config_players.random_event_player.RandomEventPlayer
method), 145

play() (mpf.config_players.segment_display_player.SegmentDisplayPlayer
method), 146

play() (mpf.config_players.show_player.ShowPlayer
method), 146

play() (mpf.config_players.variable_player.VariablePlayer
method), 147

play() (mpf.devices.hardware_sound_system.HardwareSoundSystem
method), 71

play_file() (mpf.devices.hardware_sound_system.HardwareSoundSystem
method), 71

play_show_with_config()
(mpf.core.show_controller.ShowController
method), 44

Player (class in mpf.core.player), 206
player (mpf.core.mode.Mode attribute), 205
player (mpf.devices.extra_ball.ExtraBall attribute), 69
Playfield (class in mpf.devices.playfield), 79
playfield (mpf.core.ball_search.BallSearch at-

tribute), 201
PlayfieldTransfer (class in

mpf.devices.playfield_transfer), 79
PololuMaestroHardwarePlatform (class in

mpf.platforms.pololu_maestro), 131
post() (mpf.core.events.EventManager method), 32
post_async() (mpf.core.events.EventManager

method), 32
post_boolean() (mpf.core.events.EventManager

method), 32
post_event() (mpf.tests.MpfBcpTestCase.MpfBcpTestCase

method), 156
post_event() (mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase

method), 166
post_event() (mpf.tests.MpfGameTestCase.MpfGameTestCase

method), 177
post_event() (mpf.tests.MpfMachineTestCase.MpfMachineTestCase

method), 186
post_event() (mpf.tests.MpfTestCase.MpfTestCase

method), 195
post_event_with_params()

(mpf.tests.MpfBcpTestCase.MpfBcpTestCase

262 Index

MPF Documentation Developer Documentation, Release 0.50.22

method), 157
post_event_with_params()

(mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 167

post_event_with_params()
(mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 177

post_event_with_params()
(mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 186

post_event_with_params()
(mpf.tests.MpfTestCase.MpfTestCase method),
195

post_queue() (mpf.core.events.EventManager
method), 33

post_queue_async()
(mpf.core.events.EventManager method),
33

post_relay() (mpf.core.events.EventManager
method), 33

post_relay_async()
(mpf.core.events.EventManager method),
34

power_to_on_off() (mpf.core.utility_functions.Util
static method), 214

PowerSupplyUnit (class in
mpf.devices.power_supply_unit), 81

process_event_queue()
(mpf.core.events.EventManager method),
34

process_received_message()
(mpf.platforms.fast.fast.FastHardwarePlatform
method), 120

process_received_message()
(mpf.platforms.opp.opp.OppHardwarePlatform
method), 126

process_switch() (mpf.core.switch_controller.SwitchController
method), 46

process_switch_by_num()
(mpf.core.switch_controller.SwitchController
method), 46

process_switch_obj()
(mpf.core.switch_controller.SwitchController
method), 47

PRocHardwarePlatform (class in
mpf.platforms.p_roc), 130

profile (mpf.devices.shot.Shot attribute), 91
profile_name (mpf.devices.shot.Shot attribute), 91
pulse() (mpf.devices.driver.Driver method), 60
pulse() (mpf.devices.dual_wound_coil.DualWoundCoil

method), 67
pwm32_to_hex_string()

(mpf.core.utility_functions.Util static method),
214

pwm32_to_int() (mpf.core.utility_functions.Util
static method), 214

pwm8_to_hex_string()
(mpf.core.utility_functions.Util static method),
214

pwm8_to_int() (mpf.core.utility_functions.Util static
method), 214

Q
QueueEventPlayer (class in

mpf.config_players.queue_event_player),
144

QueueRelayPlayer (class in
mpf.config_players.queue_relay_player),
144

R
race() (mpf.core.utility_functions.Util static method),

214
raise_config_error()

(mpf.core.ball_search.BallSearch method),
201

raise_config_error()
(mpf.core.data_manager.DataManager
method), 216

raise_config_error()
(mpf.core.delays.DelayManager method),
218

raise_config_error()
(mpf.core.logging.LogMixin method), 203

raise_config_error() (mpf.core.mode.Mode
method), 205

raise_config_error()
(mpf.devices.accelerometer.Accelerometer
method), 50

raise_config_error()
(mpf.devices.achievement.Achievement
method), 53

raise_config_error()
(mpf.devices.achievement_group.AchievementGroup
method), 52

raise_config_error()
(mpf.devices.autofire.AutofireCoil method),
54

raise_config_error()
(mpf.devices.ball_device.ball_device.BallDevice
method), 55

raise_config_error()
(mpf.devices.ball_hold.BallHold method),
57

raise_config_error()
(mpf.devices.ball_lock.BallLock method),
58

Index 263

MPF Documentation Developer Documentation, Release 0.50.22

raise_config_error()
(mpf.devices.ball_save.BallSave method),
59

raise_config_error()
(mpf.devices.combo_switch.ComboSwitch
method), 61

raise_config_error()
(mpf.devices.digital_output.DigitalOutput
method), 63

raise_config_error()
(mpf.devices.diverter.Diverter method), 64

raise_config_error() (mpf.devices.dmd.Dmd
method), 64

raise_config_error() (mpf.devices.driver.Driver
method), 60

raise_config_error()
(mpf.devices.drop_target.DropTarget method),
66

raise_config_error()
(mpf.devices.drop_target.DropTargetBank
method), 65

raise_config_error()
(mpf.devices.dual_wound_coil.DualWoundCoil
method), 67

raise_config_error()
(mpf.devices.extra_ball.ExtraBall method),
69

raise_config_error()
(mpf.devices.extra_ball_group.ExtraBallGroup
method), 68

raise_config_error()
(mpf.devices.flipper.Flipper method), 70

raise_config_error()
(mpf.devices.hardware_sound_system.HardwareSoundSystem
method), 71

raise_config_error()
(mpf.devices.kickback.Kickback method),
72

raise_config_error() (mpf.devices.light.Light
method), 75

raise_config_error()
(mpf.devices.light_group.LightRing method),
72

raise_config_error()
(mpf.devices.light_group.LightStrip method),
73

raise_config_error()
(mpf.devices.logic_blocks.Accrual method), 51

raise_config_error()
(mpf.devices.logic_blocks.Counter method), 62

raise_config_error()
(mpf.devices.logic_blocks.Sequence method),
87

raise_config_error()
(mpf.devices.magnet.Magnet method), 76

raise_config_error() (mpf.devices.motor.Motor
method), 77

raise_config_error()
(mpf.devices.multiball.Multiball method),
78

raise_config_error()
(mpf.devices.multiball_lock.MultiballLock
method), 77

raise_config_error()
(mpf.devices.playfield.Playfield method),
81

raise_config_error()
(mpf.devices.playfield_transfer.PlayfieldTransfer
method), 79

raise_config_error()
(mpf.devices.power_supply_unit.PowerSupplyUnit
method), 82

raise_config_error()
(mpf.devices.rgb_dmd.RgbDmd method),
82

raise_config_error()
(mpf.devices.score_reel.ScoreReel method), 84

raise_config_error()
(mpf.devices.score_reel_group.ScoreReelGroup
method), 83

raise_config_error()
(mpf.devices.segment_display.SegmentDisplay
method), 85

raise_config_error()
(mpf.devices.sequence_shot.SequenceShot
method), 86

raise_config_error() (mpf.devices.servo.Servo
method), 87

raise_config_error() (mpf.devices.shot.Shot
method), 91

raise_config_error()
(mpf.devices.shot_group.ShotGroup method),
88

raise_config_error()
(mpf.devices.shot_profile.ShotProfile method),
89

raise_config_error()
(mpf.devices.state_machine.StateMachine
method), 91

raise_config_error()
(mpf.devices.stepper.Stepper method), 92

raise_config_error() (mpf.devices.switch.Switch
method), 93

raise_config_error()
(mpf.devices.timed_switch.TimedSwitch
method), 94

264 Index

MPF Documentation Developer Documentation, Release 0.50.22

raise_config_error() (mpf.devices.timer.Timer
method), 95

raise_config_error()
(mpf.modes.attract.code.attract.Attract
method), 98

raise_config_error()
(mpf.modes.bonus.code.bonus.Bonus method),
101

raise_config_error()
(mpf.modes.carousel.code.carousel.Carousel
method), 103

raise_config_error()
(mpf.modes.credits.code.credits.Credits
method), 105

raise_config_error()
(mpf.modes.game.code.game.Game method),
108

raise_config_error()
(mpf.modes.high_score.code.high_score.HighScore
method), 111

raise_config_error()
(mpf.modes.match.code.match.Match method),
113

raise_config_error()
(mpf.modes.service.code.service.Service
method), 115

raise_config_error()
(mpf.modes.tilt.code.tilt.Tilt method), 117

raise_config_error()
(mpf.tests.MpfBcpTestCase.MockBcpClient
method), 149

raise_config_error()
(mpf.tests.MpfTestCase.TestMachineController
method), 198

raise_config_error()
(mpf.tests.TestDataManager.TestDataManager
method), 197

random_rgb() (mpf.core.rgb_color.RGBColor static
method), 211

random_rgb() (mpf.core.rgba_color.RGBAColor
static method), 209

RandomEventPlayer (class in
mpf.config_players.random_event_player),
145

Randomizer (class in mpf.core.randomizer), 211
RaspberryPiHardwarePlatform (class in

mpf.platforms.rpi.rpi), 131
read_byte() (mpf.platforms.lisy.lisy.LisyHardwarePlatform

method), 123
read_gen2_inp_resp()

(mpf.platforms.opp.opp.OppHardwarePlatform
method), 127

read_gen2_inp_resp_initial()
(mpf.platforms.opp.opp.OppHardwarePlatform

method), 127
read_matrix_inp_resp()

(mpf.platforms.opp.opp.OppHardwarePlatform
method), 127

read_matrix_inp_resp_initial()
(mpf.platforms.opp.opp.OppHardwarePlatform
method), 127

read_message() (mpf.tests.MpfBcpTestCase.MockBcpClient
method), 149

read_string() (mpf.platforms.lisy.lisy.LisyHardwarePlatform
method), 123

readuntil() (mpf.platforms.lisy.lisy.LisyHardwarePlatform
method), 123

receive_local_closed()
(mpf.platforms.fast.fast.FastHardwarePlatform
method), 120

receive_local_open()
(mpf.platforms.fast.fast.FastHardwarePlatform
method), 120

receive_nw_closed()
(mpf.platforms.fast.fast.FastHardwarePlatform
method), 120

receive_nw_open()
(mpf.platforms.fast.fast.FastHardwarePlatform
method), 120

receive_sa() (mpf.platforms.fast.fast.FastHardwarePlatform
method), 121

red (mpf.core.rgb_color.RGBColor attribute), 211
red (mpf.core.rgba_color.RGBAColor attribute), 209
register() (mpf.core.ball_search.BallSearch

method), 201
register_boot_hold()

(mpf.core.machine.MachineController
method), 37

register_boot_hold()
(mpf.tests.MpfTestCase.TestMachineController
method), 198

register_io_board()
(mpf.platforms.fast.fast.FastHardwarePlatform
method), 121

register_load_method()
(mpf.core.mode_controller.ModeController
method), 39

register_monitor()
(mpf.core.machine.MachineController
method), 37

register_monitor()
(mpf.tests.MpfTestCase.TestMachineController
method), 198

register_monitorable_device()
(mpf.core.device_manager.DeviceManager
method), 31

register_processor_connection()
(mpf.platforms.fast.fast.FastHardwarePlatform

Index 265

MPF Documentation Developer Documentation, Release 0.50.22

method), 121
register_processor_connection()

(mpf.platforms.opp.opp.OppHardwarePlatform
method), 127

register_show() (mpf.core.show_controller.ShowController
method), 44

register_start_method()
(mpf.core.mode_controller.ModeController
method), 39

register_stop_method()
(mpf.core.mode_controller.ModeController
method), 40

register_switch()
(mpf.core.switch_controller.SwitchController
method), 47

release_all() (mpf.devices.ball_hold.BallHold
method), 57

release_all_balls()
(mpf.devices.ball_lock.BallLock method),
58

release_ball() (mpf.devices.magnet.Magnet
method), 76

release_balls() (mpf.devices.ball_hold.BallHold
method), 57

release_balls() (mpf.devices.ball_lock.BallLock
method), 58

release_one() (mpf.devices.ball_hold.BallHold
method), 57

release_one() (mpf.devices.ball_lock.BallLock
method), 58

release_one_if_full()
(mpf.devices.ball_hold.BallHold method),
57

release_one_if_full()
(mpf.devices.ball_lock.BallLock method),
58

release_switch_and_run()
(mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 157

release_switch_and_run()
(mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 167

release_switch_and_run()
(mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 177

release_switch_and_run()
(mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 187

release_switch_and_run()
(mpf.tests.MpfTestCase.MpfTestCase method),
196

remaining_space_in_hold()
(mpf.devices.ball_hold.BallHold method),
57

remaining_space_in_lock()
(mpf.devices.ball_lock.BallLock method),
58

remaining_virtual_space_in_lock
(mpf.devices.multiball_lock.MultiballLock
attribute), 77

remove() (mpf.core.delays.DelayManager method),
218

remove_all_handlers_for_event()
(mpf.core.events.EventManager method),
34

remove_from_bank()
(mpf.devices.drop_target.DropTarget method),
66

remove_from_group()
(mpf.devices.achievement.Achievement
method), 53

remove_from_stack_by_key()
(mpf.devices.light.Light method), 75

remove_handler() (mpf.core.events.EventManager
method), 34

remove_handler() (mpf.devices.switch.Switch
method), 93

remove_handler_by_event()
(mpf.core.events.EventManager method),
34

remove_handler_by_key()
(mpf.core.events.EventManager method),
34

remove_handlers_by_keys()
(mpf.core.events.EventManager method),
34

remove_incoming_ball()
(mpf.devices.ball_device.ball_device.BallDevice
method), 55

remove_incoming_ball()
(mpf.devices.playfield.Playfield method),
81

remove_machine_var()
(mpf.core.machine.MachineController
method), 37

remove_machine_var()
(mpf.tests.MpfTestCase.TestMachineController
method), 199

remove_machine_var_search()
(mpf.core.machine.MachineController
method), 38

remove_machine_var_search()
(mpf.tests.MpfTestCase.TestMachineController
method), 199

remove_monitor() (mpf.core.switch_controller.SwitchController
method), 47

remove_start_method()
(mpf.core.mode_controller.ModeController

266 Index

MPF Documentation Developer Documentation, Release 0.50.22

method), 40
remove_stop_method()

(mpf.core.mode_controller.ModeController
method), 40

remove_switch_handler()
(mpf.core.switch_controller.SwitchController
method), 47

remove_switch_handler_by_key()
(mpf.core.switch_controller.SwitchController
method), 47

remove_text_by_key()
(mpf.devices.segment_display.SegmentDisplay
method), 85

replace_handler()
(mpf.core.events.EventManager method),
34

replace_or_advance_show()
(mpf.core.show_controller.ShowController
method), 44

request_ball() (mpf.devices.ball_device.ball_device.BallDevice
method), 55

request_player_add()
(mpf.modes.game.code.game.Game method),
108

request_to_start_game()
(mpf.core.ball_controller.BallController
method), 29

request_to_start_game()
(mpf.core.ball_search.BallSearch method),
202

requested_balls (mpf.devices.ball_device.ball_device.BallDevice
attribute), 56

reset() (mpf.core.delays.DelayManager method), 218
reset() (mpf.core.machine.MachineController

method), 38
reset() (mpf.devices.achievement.Achievement

method), 53
reset() (mpf.devices.ball_hold.BallHold method), 57
reset() (mpf.devices.ball_lock.BallLock method), 58
reset() (mpf.devices.diverter.Diverter method), 64
reset() (mpf.devices.drop_target.DropTarget method),

66
reset() (mpf.devices.drop_target.DropTargetBank

method), 65
reset() (mpf.devices.logic_blocks.Accrual method),

51
reset() (mpf.devices.logic_blocks.Counter method),

62
reset() (mpf.devices.logic_blocks.Sequence method),

87
reset() (mpf.devices.magnet.Magnet method), 76
reset() (mpf.devices.motor.Motor method), 77
reset() (mpf.devices.multiball.Multiball method), 78
reset() (mpf.devices.servo.Servo method), 87

reset() (mpf.devices.shot.Shot method), 91
reset() (mpf.devices.shot_group.ShotGroup method),

88
reset() (mpf.devices.stepper.Stepper method), 92
reset() (mpf.devices.timer.Timer method), 95
reset() (mpf.tests.MpfTestCase.TestMachineController

method), 199
reset_all_counts()

(mpf.devices.multiball_lock.MultiballLock
method), 78

reset_count_for_current_player()
(mpf.devices.multiball_lock.MultiballLock
method), 78

reset_mock_events()
(mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 157

reset_mock_events()
(mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 167

reset_mock_events()
(mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 178

reset_mock_events()
(mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 187

reset_mock_events()
(mpf.tests.MpfTestCase.MpfTestCase method),
196

reset_timer() (mpf.core.ball_search.BallSearch
method), 202

reset_warnings() (mpf.modes.tilt.code.tilt.Tilt
method), 117

restart() (mpf.devices.logic_blocks.Accrual
method), 51

restart() (mpf.devices.logic_blocks.Counter
method), 62

restart() (mpf.devices.logic_blocks.Sequence
method), 87

restart() (mpf.devices.timer.Timer method), 95
restart_on_next_ball (mpf.core.mode.Mode at-

tribute), 205
result_of_start_request()

(mpf.modes.attract.code.attract.Attract
method), 98

rgb (mpf.core.rgb_color.RGBColor attribute), 211
rgb (mpf.core.rgba_color.RGBAColor attribute), 209
rgb_to_hex() (mpf.core.rgb_color.RGBColor static

method), 211
rgb_to_hex() (mpf.core.rgba_color.RGBAColor

static method), 209
rgba (mpf.core.rgba_color.RGBAColor attribute), 209
RGBAColor (class in mpf.core.rgba_color), 208
RGBColor (class in mpf.core.rgb_color), 209
RgbDmd (class in mpf.devices.rgb_dmd), 82

Index 267

MPF Documentation Developer Documentation, Release 0.50.22

rotate() (mpf.devices.shot_group.ShotGroup
method), 88

rotate_left() (mpf.devices.achievement_group.AchievementGroup
method), 52

rotate_left() (mpf.devices.shot_group.ShotGroup
method), 89

rotate_right() (mpf.devices.achievement_group.AchievementGroup
method), 52

rotate_right() (mpf.devices.shot_group.ShotGroup
method), 89

run() (mpf.core.machine.MachineController method),
38

run() (mpf.tests.MpfTestCase.TestMachineController
method), 199

run_now() (mpf.core.delays.DelayManager method),
218

S
save() (mpf.core.file_manager.FileManager static

method), 203
save_all() (mpf.core.data_manager.DataManager

method), 216
save_all() (mpf.tests.TestDataManager.TestDataManager

method), 197
scale_accelerometer_to_g()

(mpf.platforms.p3_roc.P3RocHardwarePlatform
class method), 129

schedule_deactivation()
(mpf.devices.diverter.Diverter method), 64

ScoreReel (class in mpf.devices.score_reel), 84
ScoreReelGroup (class in

mpf.devices.score_reel_group), 82
SegmentDisplay (class in

mpf.devices.segment_display), 85
SegmentDisplayPlayer (class in

mpf.config_players.segment_display_player),
145

select() (mpf.devices.achievement.Achievement
method), 53

select_random_achievement()
(mpf.devices.achievement_group.AchievementGroup
method), 52

send() (mpf.core.bcp.bcp.Bcp method), 29
send() (mpf.tests.MpfBcpTestCase.MockBcpClient

method), 149
send_all_variable_events()

(mpf.core.player.Player method), 208
send_byte() (mpf.platforms.lisy.lisy.LisyHardwarePlatform

method), 123
send_cmd() (mpf.platforms.mypinballs.mypinballs.MyPinballsHardwarePlatform

method), 124
send_cmd_and_wait_for_response()

(mpf.platforms.spike.spike.SpikePlatform
method), 136

send_cmd_async() (mpf.platforms.spike.spike.SpikePlatform
method), 136

send_cmd_raw() (mpf.platforms.spike.spike.SpikePlatform
method), 136

send_cmd_sync() (mpf.platforms.spike.spike.SpikePlatform
method), 136

send_command() (mpf.platforms.rpi.rpi.RaspberryPiHardwarePlatform
method), 132

send_string() (mpf.platforms.lisy.lisy.LisyHardwarePlatform
method), 123

send_to_processor()
(mpf.platforms.opp.opp.OppHardwarePlatform
method), 127

Sequence (class in mpf.devices.logic_blocks), 86
SequenceShot (class in mpf.devices.sequence_shot),

85
Service (class in mpf.modes.service.code.service), 113
ServiceController (class in

mpf.core.service_controller), 42
Servo (class in mpf.devices.servo), 87
set_acceleration_limit()

(mpf.devices.servo.Servo method), 87
set_default_platform()

(mpf.core.machine.MachineController
method), 38

set_default_platform()
(mpf.tests.MpfTestCase.TestMachineController
method), 199

set_destination_value()
(mpf.devices.score_reel.ScoreReel method), 84

set_eject_state()
(mpf.devices.ball_device.ball_device.BallDevice
method), 56

set_flashing() (mpf.devices.segment_display.SegmentDisplay
method), 85

set_in_dict() (mpf.core.utility_functions.Util static
method), 214

set_machine_var()
(mpf.core.machine.MachineController
method), 38

set_machine_var()
(mpf.tests.MpfTestCase.TestMachineController
method), 199

set_mode_state() (mpf.core.mode_controller.ModeController
method), 40

set_num_balls_known()
(mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 157

set_num_balls_known()
(mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 167

set_num_balls_known()
(mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 178

268 Index

MPF Documentation Developer Documentation, Release 0.50.22

set_num_balls_known()
(mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 187

set_num_balls_known()
(mpf.tests.MpfTestCase.MpfTestCase method),
196

set_pulse_on_hit_and_enable_and_release_and_disable_rule()
(mpf.core.platform_controller.PlatformController
method), 41

set_pulse_on_hit_and_enable_and_release_and_disable_rule()
(mpf.platforms.fast.fast.FastHardwarePlatform
method), 121

set_pulse_on_hit_and_enable_and_release_and_disable_rule()
(mpf.platforms.lisy.lisy.LisyHardwarePlatform
method), 123

set_pulse_on_hit_and_enable_and_release_and_disable_rule()
(mpf.platforms.opp.opp.OppHardwarePlatform
method), 127

set_pulse_on_hit_and_enable_and_release_and_disable_rule()
(mpf.platforms.rpi.rpi.RaspberryPiHardwarePlatform
method), 132

set_pulse_on_hit_and_enable_and_release_and_disable_rule()
(mpf.platforms.snux.SnuxHardwarePlatform
method), 135

set_pulse_on_hit_and_enable_and_release_and_disable_rule()
(mpf.platforms.spike.spike.SpikePlatform
method), 136

set_pulse_on_hit_and_enable_and_release_and_disable_rule()
(mpf.platforms.virtual.VirtualHardwarePlatform
method), 139

set_pulse_on_hit_and_enable_and_release_and_disable_rule()
(mpf.platforms.virtual_pinball.virtual_pinball.VirtualPinballPlatform
method), 140

set_pulse_on_hit_and_enable_and_release_rule()
(mpf.core.platform_controller.PlatformController
method), 41

set_pulse_on_hit_and_enable_and_release_rule()
(mpf.platforms.fast.fast.FastHardwarePlatform
method), 121

set_pulse_on_hit_and_enable_and_release_rule()
(mpf.platforms.lisy.lisy.LisyHardwarePlatform
method), 123

set_pulse_on_hit_and_enable_and_release_rule()
(mpf.platforms.opp.opp.OppHardwarePlatform
method), 128

set_pulse_on_hit_and_enable_and_release_rule()
(mpf.platforms.rpi.rpi.RaspberryPiHardwarePlatform
method), 132

set_pulse_on_hit_and_enable_and_release_rule()
(mpf.platforms.snux.SnuxHardwarePlatform
method), 135

set_pulse_on_hit_and_enable_and_release_rule()
(mpf.platforms.spike.spike.SpikePlatform
method), 136

set_pulse_on_hit_and_enable_and_release_rule()
(mpf.platforms.virtual.VirtualHardwarePlatform
method), 139

set_pulse_on_hit_and_enable_and_release_rule()
(mpf.platforms.virtual_pinball.virtual_pinball.VirtualPinballPlatform
method), 140

set_pulse_on_hit_and_release_rule()
(mpf.core.platform_controller.PlatformController
method), 42

set_pulse_on_hit_and_release_rule()
(mpf.platforms.fast.fast.FastHardwarePlatform
method), 121

set_pulse_on_hit_and_release_rule()
(mpf.platforms.lisy.lisy.LisyHardwarePlatform
method), 123

set_pulse_on_hit_and_release_rule()
(mpf.platforms.opp.opp.OppHardwarePlatform
method), 128

set_pulse_on_hit_and_release_rule()
(mpf.platforms.rpi.rpi.RaspberryPiHardwarePlatform
method), 132

set_pulse_on_hit_and_release_rule()
(mpf.platforms.snux.SnuxHardwarePlatform
method), 135

set_pulse_on_hit_and_release_rule()
(mpf.platforms.spike.spike.SpikePlatform
method), 137

set_pulse_on_hit_and_release_rule()
(mpf.platforms.virtual.VirtualHardwarePlatform
method), 139

set_pulse_on_hit_and_release_rule()
(mpf.platforms.virtual_pinball.virtual_pinball.VirtualPinballPlatform
method), 140

set_pulse_on_hit_rule()
(mpf.core.platform_controller.PlatformController
method), 42

set_pulse_on_hit_rule()
(mpf.platforms.fast.fast.FastHardwarePlatform
method), 121

set_pulse_on_hit_rule()
(mpf.platforms.lisy.lisy.LisyHardwarePlatform
method), 123

set_pulse_on_hit_rule()
(mpf.platforms.opp.opp.OppHardwarePlatform
method), 128

set_pulse_on_hit_rule()
(mpf.platforms.rpi.rpi.RaspberryPiHardwarePlatform
method), 132

set_pulse_on_hit_rule()
(mpf.platforms.snux.SnuxHardwarePlatform
method), 135

set_pulse_on_hit_rule()
(mpf.platforms.spike.spike.SpikePlatform
method), 137

Index 269

MPF Documentation Developer Documentation, Release 0.50.22

set_pulse_on_hit_rule()
(mpf.platforms.virtual.VirtualHardwarePlatform
method), 139

set_pulse_on_hit_rule()
(mpf.platforms.virtual_pinball.virtual_pinball.VirtualPinballPlatform
method), 140

set_setting_value()
(mpf.core.settings_controller.SettingsController
method), 43

set_speed_limit() (mpf.devices.servo.Servo
method), 87

set_state() (mpf.core.switch_controller.SwitchController
method), 47

set_tick_interval() (mpf.devices.timer.Timer
method), 95

set_value() (mpf.devices.score_reel_group.ScoreReelGroup
method), 83

set_volume() (mpf.devices.hardware_sound_system.HardwareSoundSystem
method), 71

SettingsController (class in
mpf.core.settings_controller), 43

setUp() (mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 157

setUp() (mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 167

setUp() (mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 178

setUp() (mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 187

setUp() (mpf.tests.MpfTestCase.MpfTestCase method),
196

setup_eject_chain()
(mpf.devices.ball_device.ball_device.BallDevice
method), 56

setup_eject_chain_next_hop()
(mpf.devices.ball_device.ball_device.BallDevice
method), 56

setup_player_controlled_eject()
(mpf.devices.ball_device.ball_device.BallDevice
method), 56

shortDescription()
(mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 157

shortDescription()
(mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 167

shortDescription()
(mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 178

shortDescription()
(mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 187

shortDescription()
(mpf.tests.MpfTestCase.MpfTestCase method),

196
Shot (class in mpf.devices.shot), 90
ShotGroup (class in mpf.devices.shot_group), 88
ShotProfile (class in mpf.devices.shot_profile), 89
ShowController (class in mpf.core.show_controller),

43
ShowPlayer (class in

mpf.config_players.show_player), 146
shutdown() (mpf.core.machine.MachineController

method), 38
shutdown() (mpf.tests.MpfTestCase.TestMachineController

method), 199
skipTest() (mpf.tests.MpfBcpTestCase.MpfBcpTestCase

method), 157
skipTest() (mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase

method), 167
skipTest() (mpf.tests.MpfGameTestCase.MpfGameTestCase

method), 178
skipTest() (mpf.tests.MpfMachineTestCase.MpfMachineTestCase

method), 187
skipTest() (mpf.tests.MpfTestCase.MpfTestCase

method), 196
slam_tilt() (mpf.modes.tilt.code.tilt.Tilt method),

117
SmartMatrixHardwarePlatform (class in

mpf.platforms.smartmatrix), 133
SmartVirtualHardwarePlatform (class in

mpf.platforms.smart_virtual), 133
Smbus2 (class in mpf.platforms.smbus2), 134
SnuxHardwarePlatform (class in

mpf.platforms.snux), 134
SpikePlatform (class in mpf.platforms.spike.spike),

135
stack (mpf.devices.light.Light attribute), 75
start() (mpf.core.ball_search.BallSearch method),

202
start() (mpf.core.mode.Mode method), 206
start() (mpf.devices.achievement.Achievement

method), 53
start() (mpf.devices.multiball.Multiball method), 78
start() (mpf.devices.timer.Timer method), 96
start() (mpf.modes.attract.code.attract.Attract

method), 98
start() (mpf.modes.bonus.code.bonus.Bonus method),

101
start() (mpf.modes.carousel.code.carousel.Carousel

method), 103
start() (mpf.modes.credits.code.credits.Credits

method), 105
start() (mpf.modes.game.code.game.Game method),

108
start() (mpf.modes.high_score.code.high_score.HighScore

method), 111

270 Index

MPF Documentation Developer Documentation, Release 0.50.22

start() (mpf.modes.match.code.match.Match
method), 113

start() (mpf.modes.service.code.service.Service
method), 115

start() (mpf.modes.tilt.code.tilt.Tilt method), 117
start() (mpf.platforms.fast.fast.FastHardwarePlatform

method), 121
start() (mpf.platforms.lisy.lisy.LisyHardwarePlatform

method), 123
start() (mpf.platforms.opp.opp.OppHardwarePlatform

method), 128
start() (mpf.platforms.smart_virtual.SmartVirtualHardwarePlatform

method), 133
start_button_pressed()

(mpf.modes.attract.code.attract.Attract
method), 98

start_button_released()
(mpf.modes.attract.code.attract.Attract
method), 98

start_game() (mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 167

start_game() (mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 178

start_mode() (mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 157

start_mode() (mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 168

start_mode() (mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 178

start_mode() (mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 187

start_mode() (mpf.tests.MpfTestCase.MpfTestCase
method), 196

start_or_add_a_ball()
(mpf.devices.multiball.Multiball method),
78

start_selected() (mpf.devices.achievement_group.AchievementGroup
method), 52

start_service() (mpf.core.service_controller.ServiceController
method), 43

start_two_player_game()
(mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 168

start_two_player_game()
(mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 178

started (mpf.core.ball_search.BallSearch attribute),
202

state (mpf.devices.achievement.Achievement attribute),
53

state (mpf.devices.ball_device.ball_device.BallDevice
attribute), 56

state (mpf.devices.combo_switch.ComboSwitch at-
tribute), 61

state (mpf.devices.shot.Shot attribute), 91
state (mpf.devices.state_machine.StateMachine at-

tribute), 91
state (mpf.devices.switch.Switch attribute), 93
state_name (mpf.devices.shot.Shot attribute), 91
StateMachine (class in mpf.devices.state_machine),

91
Stepper (class in mpf.devices.stepper), 91
stop() (mpf.core.ball_search.BallSearch method), 202
stop() (mpf.core.machine.MachineController method),

38
stop() (mpf.core.mode.Mode method), 206
stop() (mpf.core.text_ui.TextUi method), 49
stop() (mpf.devices.achievement.Achievement

method), 53
stop() (mpf.devices.multiball.Multiball method), 78
stop() (mpf.devices.score_reel.ScoreReel method), 84
stop() (mpf.devices.stepper.Stepper method), 92
stop() (mpf.devices.timer.Timer method), 96
stop() (mpf.modes.attract.code.attract.Attract

method), 99
stop() (mpf.modes.bonus.code.bonus.Bonus method),

101
stop() (mpf.modes.carousel.code.carousel.Carousel

method), 103
stop() (mpf.modes.credits.code.credits.Credits

method), 106
stop() (mpf.modes.game.code.game.Game method),

109
stop() (mpf.modes.high_score.code.high_score.HighScore

method), 111
stop() (mpf.modes.match.code.match.Match method),

113
stop() (mpf.modes.service.code.service.Service

method), 115
stop() (mpf.modes.tilt.code.tilt.Tilt method), 117
stop() (mpf.platforms.fast.fast.FastHardwarePlatform

method), 121
stop() (mpf.platforms.i2c_servo_controller.I2CServoControllerHardwarePlatform

method), 122
stop() (mpf.platforms.lisy.lisy.LisyHardwarePlatform

method), 123
stop() (mpf.platforms.mma8451.MMA8451Platform

method), 124
stop() (mpf.platforms.mypinballs.mypinballs.MyPinballsHardwarePlatform

method), 124
stop() (mpf.platforms.openpixel.OpenpixelHardwarePlatform

method), 125
stop() (mpf.platforms.opp.opp.OppHardwarePlatform

method), 128
stop() (mpf.platforms.pololu_maestro.PololuMaestroHardwarePlatform

method), 131
stop() (mpf.platforms.rpi.rpi.RaspberryPiHardwarePlatform

method), 133

Index 271

MPF Documentation Developer Documentation, Release 0.50.22

stop() (mpf.platforms.smartmatrix.SmartMatrixHardwarePlatform
method), 134

stop() (mpf.platforms.snux.SnuxHardwarePlatform
method), 135

stop() (mpf.platforms.spike.spike.SpikePlatform
method), 137

stop() (mpf.platforms.trinamics_steprocker.TrinamicsStepRocker
method), 138

stop() (mpf.platforms.virtual.VirtualHardwarePlatform
method), 139

stop() (mpf.tests.MpfBcpTestCase.MockBcpClient
method), 149

stop() (mpf.tests.MpfTestCase.TestMachineController
method), 199

stop_all_sounds()
(mpf.devices.hardware_sound_system.HardwareSoundSystem
method), 71

stop_device() (mpf.devices.ball_device.ball_device.BallDevice
method), 56

stop_devices() (mpf.core.device_manager.DeviceManager
method), 31

stop_game() (mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 168

stop_game() (mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 178

stop_ignoring_hits()
(mpf.devices.logic_blocks.Counter method), 62

stop_mode() (mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 157

stop_mode() (mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 168

stop_mode() (mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 178

stop_mode() (mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 187

stop_mode() (mpf.tests.MpfTestCase.MpfTestCase
method), 196

stop_service() (mpf.core.service_controller.ServiceController
method), 43

string_to_class() (mpf.core.utility_functions.Util
static method), 215

string_to_gain() (mpf.core.utility_functions.Util
static method), 215

string_to_list() (mpf.core.utility_functions.Util
static method), 215

string_to_lowercase_list()
(mpf.core.utility_functions.Util static method),
215

string_to_ms() (mpf.core.utility_functions.Util
static method), 215

string_to_rgb() (mpf.core.rgb_color.RGBColor
static method), 211

string_to_rgb() (mpf.core.rgba_color.RGBAColor
static method), 209

string_to_secs() (mpf.core.utility_functions.Util
static method), 215

subtract() (mpf.devices.timer.Timer method), 96
sw_flip() (mpf.devices.flipper.Flipper method), 70
sw_release() (mpf.devices.flipper.Flipper method),

70
Switch (class in mpf.devices.switch), 92
SwitchController (class in

mpf.core.switch_controller), 44
SwitchPlayer (class in mpf.plugins.switch_player),

48

T
tearDown() (mpf.tests.MpfBcpTestCase.MpfBcpTestCase

method), 157
tearDown() (mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase

method), 168
tearDown() (mpf.tests.MpfGameTestCase.MpfGameTestCase

method), 178
tearDown() (mpf.tests.MpfMachineTestCase.MpfMachineTestCase

method), 187
tearDown() (mpf.tests.MpfTestCase.MpfTestCase

method), 196
TestDataManager (class in

mpf.tests.TestDataManager), 196
TestMachineController (class in

mpf.tests.MpfTestCase), 197
text_to_speech() (mpf.devices.hardware_sound_system.HardwareSoundSystem

method), 71
TextUi (class in mpf.core.text_ui), 49
tick() (mpf.platforms.p3_roc.P3RocHardwarePlatform

method), 130
tick() (mpf.platforms.p_roc.PRocHardwarePlatform

method), 131
tick() (mpf.platforms.snux.SnuxHardwarePlatform

method), 135
ticks (mpf.devices.timer.Timer attribute), 96
Tilt (class in mpf.modes.tilt.code.tilt), 116
tilt() (mpf.modes.tilt.code.tilt.Tilt method), 118
tilt_settle_ms_remaining()

(mpf.modes.tilt.code.tilt.Tilt method), 118
tilt_warning() (mpf.modes.tilt.code.tilt.Tilt

method), 118
TimedSwitch (class in mpf.devices.timed_switch), 93
Timer (class in mpf.devices.timer), 94
timer_complete() (mpf.devices.timer.Timer

method), 96
timer_start() (mpf.devices.ball_save.BallSave

method), 59
toggle_credit_play()

(mpf.modes.credits.code.credits.Credits
method), 106

transfer() (mpf.devices.playfield_transfer.PlayfieldTransfer
method), 79

272 Index

MPF Documentation Developer Documentation, Release 0.50.22

TrinamicsStepRocker (class in
mpf.platforms.trinamics_steprocker), 137

U
unblock() (mpf.core.ball_search.BallSearch method),

202
unexpected_ball_received()

(mpf.devices.ball_device.ball_device.BallDevice
method), 56

unexpected_ball_received()
(mpf.devices.playfield.Playfield method),
81

unittest_verbosity()
(mpf.tests.MpfBcpTestCase.MpfBcpTestCase
method), 157

unittest_verbosity()
(mpf.tests.MpfFakeGameTestCase.MpfFakeGameTestCase
method), 168

unittest_verbosity()
(mpf.tests.MpfGameTestCase.MpfGameTestCase
method), 179

unittest_verbosity()
(mpf.tests.MpfMachineTestCase.MpfMachineTestCase
method), 187

unittest_verbosity()
(mpf.tests.MpfTestCase.MpfTestCase method),
196

unlight() (mpf.devices.score_reel_group.ScoreReelGroup
method), 83

update() (mpf.devices.dmd.Dmd method), 64
update() (mpf.devices.rgb_dmd.RgbDmd method), 82
update_acceleration()

(mpf.devices.accelerometer.Accelerometer
method), 50

update_firmware()
(mpf.platforms.fast.fast.FastHardwarePlatform
method), 121

update_incand() (mpf.platforms.opp.opp.OppHardwarePlatform
method), 128

update_leds() (mpf.platforms.fast.fast.FastHardwarePlatform
method), 121

update_switches_from_hw()
(mpf.core.switch_controller.SwitchController
method), 47

Util (class in mpf.core.utility_functions), 212

V
validate_coil_section()

(mpf.platforms.snux.SnuxHardwarePlatform
method), 135

validate_coil_section()
(mpf.platforms.virtual.VirtualHardwarePlatform
method), 139

validate_config_entry()
(mpf.config_players.block_event_player.BlockEventPlayer
method), 141

validate_config_entry()
(mpf.config_players.queue_event_player.QueueEventPlayer
method), 144

validate_config_entry()
(mpf.config_players.queue_relay_player.QueueRelayPlayer
method), 145

validate_config_entry()
(mpf.config_players.random_event_player.RandomEventPlayer
method), 145

validate_config_entry()
(mpf.config_players.variable_player.VariablePlayer
method), 147

validate_machine_config_section()
(mpf.core.machine.MachineController
method), 38

validate_machine_config_section()
(mpf.tests.MpfTestCase.TestMachineController
method), 199

validate_switch_section()
(mpf.platforms.virtual.VirtualHardwarePlatform
method), 139

value (mpf.devices.logic_blocks.Accrual attribute), 51
value (mpf.devices.logic_blocks.Counter attribute), 62
value (mpf.devices.logic_blocks.Sequence attribute), 87
VariablePlayer (class in

mpf.config_players.variable_player), 146
verify_switches()

(mpf.core.switch_controller.SwitchController
method), 48

verify_system_info()
(mpf.core.machine.MachineController
method), 38

verify_system_info()
(mpf.tests.MpfTestCase.TestMachineController
method), 200

vers_resp() (mpf.platforms.opp.opp.OppHardwarePlatform
method), 128

VirtualHardwarePlatform (class in
mpf.platforms.virtual), 138

VirtualPinballPlatform (class in
mpf.platforms.virtual_pinball.virtual_pinball),
139

vpx_changed_gi_strings()
(mpf.platforms.virtual_pinball.virtual_pinball.VirtualPinballPlatform
method), 140

vpx_changed_lamps()
(mpf.platforms.virtual_pinball.virtual_pinball.VirtualPinballPlatform
method), 140

vpx_changed_solenoids()
(mpf.platforms.virtual_pinball.virtual_pinball.VirtualPinballPlatform
method), 140

Index 273

MPF Documentation Developer Documentation, Release 0.50.22

vpx_get_mech() (mpf.platforms.virtual_pinball.virtual_pinball.VirtualPinballPlatform
method), 140

vpx_get_switch() (mpf.platforms.virtual_pinball.virtual_pinball.VirtualPinballPlatform
method), 140

vpx_mech() (mpf.platforms.virtual_pinball.virtual_pinball.VirtualPinballPlatform
method), 141

vpx_set_mech() (mpf.platforms.virtual_pinball.virtual_pinball.VirtualPinballPlatform
method), 141

vpx_set_switch() (mpf.platforms.virtual_pinball.virtual_pinball.VirtualPinballPlatform
method), 141

vpx_start() (mpf.platforms.virtual_pinball.virtual_pinball.VirtualPinballPlatform
method), 141

vpx_switch() (mpf.platforms.virtual_pinball.virtual_pinball.VirtualPinballPlatform
method), 141

W
wait_for_any_event()

(mpf.core.events.EventManager method),
35

wait_for_any_switch()
(mpf.core.switch_controller.SwitchController
method), 48

wait_for_asset_load()
(mpf.core.assets.AsyncioSyncAssetManager
method), 27

wait_for_event() (mpf.core.events.EventManager
method), 35

wait_for_ready() (mpf.devices.score_reel.ScoreReel
method), 84

wait_for_ready() (mpf.devices.score_reel_group.ScoreReelGroup
method), 84

wait_for_ready_to_receive()
(mpf.devices.ball_device.ball_device.BallDevice
method), 56

wait_for_ready_to_receive()
(mpf.devices.playfield.Playfield static method),
81

wait_for_switch()
(mpf.core.switch_controller.SwitchController
method), 48

warning_log() (mpf.core.ball_search.BallSearch
method), 202

warning_log() (mpf.core.data_manager.DataManager
method), 216

warning_log() (mpf.core.delays.DelayManager
method), 219

warning_log() (mpf.core.logging.LogMixin method),
203

warning_log() (mpf.core.mode.Mode method), 206
warning_log() (mpf.modes.attract.code.attract.Attract

method), 99
warning_log() (mpf.modes.bonus.code.bonus.Bonus

method), 101

warning_log() (mpf.modes.carousel.code.carousel.Carousel
method), 103

warning_log() (mpf.modes.credits.code.credits.Credits
method), 106

warning_log() (mpf.modes.game.code.game.Game
method), 109

warning_log() (mpf.modes.high_score.code.high_score.HighScore
method), 111

warning_log() (mpf.modes.match.code.match.Match
method), 113

warning_log() (mpf.modes.service.code.service.Service
method), 115

warning_log() (mpf.modes.tilt.code.tilt.Tilt method),
118

warning_log() (mpf.tests.MpfBcpTestCase.MockBcpClient
method), 149

warning_log() (mpf.tests.MpfTestCase.TestMachineController
method), 200

warning_log() (mpf.tests.TestDataManager.TestDataManager
method), 197

X
x (mpf.devices.light.Light attribute), 75
x (mpf.devices.switch.Switch attribute), 93

Y
y (mpf.devices.light.Light attribute), 75
y (mpf.devices.switch.Switch attribute), 93

Z
z (mpf.devices.light.Light attribute), 75
z (mpf.devices.switch.Switch attribute), 93

274 Index

	Understanding the MPF codebase
	Adding custom code to your machine
	API Reference
	Writing Tests
	Extending, Adding to, and Enhancing MPF
	BCP Protocol
	Index
	Overview & Tour of MPF code
	Adding custom code to your game
	API Reference
	Automated Testing
	Extending MPF
	BCP Protocol Specification
	Method & Class Index

